找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Challenges in a New Phase of Materials Science; Kyoto, Japan, August Yasumasa Nishiura,Motoko Kotani Conference proceedings 20

[復(fù)制鏈接]
查看: 38449|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:12:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical Challenges in a New Phase of Materials Science
副標(biāo)題Kyoto, Japan, August
編輯Yasumasa Nishiura,Motoko Kotani
視頻videohttp://file.papertrans.cn/627/626039/626039.mp4
概述Includes the latest studies of mathematical aspects in defect dynamics, negatively curved carbon crystal, topological analysis of di-block copolymers, persistence modules, and fracture dynamics.Presen
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Mathematical Challenges in a New Phase of Materials Science; Kyoto, Japan, August Yasumasa Nishiura,Motoko Kotani Conference proceedings 20
描述This volume comprises eight papers delivered at the RIMS International Conference "Mathematical Challenges in a New Phase of Materials Science", Kyoto, August 4–8, 2014. The contributions address subjects in defect dynamics, negatively curved carbon crystal, topological analysis of di-block copolymers, persistence modules, and fracture dynamics. These papers highlight the strong interaction between mathematics and materials science and also reflect the activity of WPI-AIMR at Tohoku University, in which collaborations between mathematicians and experimentalists are actively ongoing.
出版日期Conference proceedings 2016
關(guān)鍵詞Discrete geometry; Dynamical system theory; Hierarchical structures; Non-equilibrium dynamics; Self-orga
版次1
doihttps://doi.org/10.1007/978-4-431-56104-0
isbn_softcover978-4-431-56777-6
isbn_ebook978-4-431-56104-0Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Japan KK, part of Springer Nature 2016
The information of publication is updating

書目名稱Mathematical Challenges in a New Phase of Materials Science影響因子(影響力)




書目名稱Mathematical Challenges in a New Phase of Materials Science影響因子(影響力)學(xué)科排名




書目名稱Mathematical Challenges in a New Phase of Materials Science網(wǎng)絡(luò)公開度




書目名稱Mathematical Challenges in a New Phase of Materials Science網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Challenges in a New Phase of Materials Science被引頻次




書目名稱Mathematical Challenges in a New Phase of Materials Science被引頻次學(xué)科排名




書目名稱Mathematical Challenges in a New Phase of Materials Science年度引用




書目名稱Mathematical Challenges in a New Phase of Materials Science年度引用學(xué)科排名




書目名稱Mathematical Challenges in a New Phase of Materials Science讀者反饋




書目名稱Mathematical Challenges in a New Phase of Materials Science讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:37:58 | 只看該作者
地板
發(fā)表于 2025-3-22 05:06:50 | 只看該作者
An Energy-Consistent Model of Dislocation Dynamics in an Elastic Body,e energy in the slip plane and an elastic energy in the elastic body. The obtained model becomes a 3D-2D bulk-surface system and naturally includes the Peach-Koehler force term and the notion of dislocation core. We also derive a 2D-1D bulk-surface system for a straight screw dislocation and give some numerical examples for it.
5#
發(fā)表于 2025-3-22 10:45:03 | 只看該作者
Conference proceedings 2016rs, persistence modules, and fracture dynamics. These papers highlight the strong interaction between mathematics and materials science and also reflect the activity of WPI-AIMR at Tohoku University, in which collaborations between mathematicians and experimentalists are actively ongoing.
6#
發(fā)表于 2025-3-22 16:08:36 | 只看該作者
Conference proceedings 2016, August 4–8, 2014. The contributions address subjects in defect dynamics, negatively curved carbon crystal, topological analysis of di-block copolymers, persistence modules, and fracture dynamics. These papers highlight the strong interaction between mathematics and materials science and also refle
7#
發(fā)表于 2025-3-22 17:18:53 | 只看該作者
Persistence of Common Topological Structures by Commutative Triple Ladder Quiver,ecial type of persistence modules defined on the so-called commutative triple ladder for the sake of simplicity. We aim to explain the essence of Auslander-Reiten theory in connection with persistence modules.
8#
發(fā)表于 2025-3-22 22:16:37 | 只看該作者
,Computer Assisted Verification of the Eigenvalue Problem for One-Dimensional Schr?dinger Operator,easurement, the rotation number of the orbit in the resulting one-dimensional projective space. Combining the interval arithmetic method for dynamical systems, we demonstrate a computer-assisted proof for the existence of isolated eigenvalues within the first spectral gap.
9#
發(fā)表于 2025-3-23 02:09:56 | 只看該作者
2194-1009 ion between mathematics and materials science and also reflect the activity of WPI-AIMR at Tohoku University, in which collaborations between mathematicians and experimentalists are actively ongoing.978-4-431-56777-6978-4-431-56104-0Series ISSN 2194-1009 Series E-ISSN 2194-1017
10#
發(fā)表于 2025-3-23 06:38:48 | 只看該作者
ontains a heterogeneous population of cholinergic and GABAergic neurons, while the amygdala displays neurons with a complex receptor subunit composition. Investigation of neurons with this type of molecular diversity benefits from techniques such as scRT-PCR for cell identification. We also illustra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 04:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闽侯县| 曲阜市| 高阳县| 凤冈县| 盐池县| 南京市| 太谷县| 崇左市| 临夏县| 垫江县| 汝州市| 西城区| 扶绥县| 连山| 含山县| 庄浪县| 安远县| 日喀则市| 宁南县| 石河子市| 淮滨县| 淳化县| 奉新县| 小金县| 酉阳| 磴口县| 新田县| 韩城市| 伊宁县| 桦南县| 阳江市| 满城县| 巴彦淖尔市| 榆林市| 杂多县| 阳城县| 仙居县| 休宁县| 华亭县| 顺义区| 鄂托克旗|