找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Aspects of Classical and Celestial Mechanics; Vladimir I. Arnold,Valery V. Kozlov,Anatoly I. Nei Book 2006Latest edition Spri

[復(fù)制鏈接]
查看: 35379|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:30:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical Aspects of Classical and Celestial Mechanics
編輯Vladimir I. Arnold,Valery V. Kozlov,Anatoly I. Nei
視頻videohttp://file.papertrans.cn/627/626008/626008.mp4
概述Best book on the subject, now in its third edition.Includes supplementary material:
叢書名稱Encyclopaedia of Mathematical Sciences
圖書封面Titlebook: Mathematical Aspects of Classical and Celestial Mechanics;  Vladimir I. Arnold,Valery V. Kozlov,Anatoly I. Nei Book 2006Latest edition Spri
描述In this book we describe the basic principles, problems, and methods of cl- sical mechanics. Our main attention is devoted to the mathematical side of the subject. Although the physical background of the models considered here and the applied aspects of the phenomena studied in this book are explored to a considerably lesser extent, we have tried to set forth ?rst and foremost the “working” apparatus of classical mechanics. This apparatus is contained mainly in Chapters 1, 3, 5, 6, and 8. Chapter 1 is devoted to the basic mathematical models of classical - chanics that are usually used for describing the motion of real mechanical systems. Special attention is given to the study of motion with constraints and to the problems of realization of constraints in dynamics. In Chapter 3 we discuss symmetry groups of mechanical systems and the corresponding conservation laws. We also expound various aspects of ord- reduction theory for systems with symmetries, which is often used in appli- tions. Chapter 4 is devoted to variational principles and methods of classical mechanics. They allow one, in particular, to obtain non-trivial results on the existence of periodic trajectories. Special at
出版日期Book 2006Latest edition
關(guān)鍵詞celestial mechanics; classical mechanics; classsical mechanics; integrability; nonintegrability; perturba
版次3
doihttps://doi.org/10.1007/978-3-540-48926-9
isbn_softcover978-3-642-06647-4
isbn_ebook978-3-540-48926-9Series ISSN 0938-0396
issn_series 0938-0396
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書目名稱Mathematical Aspects of Classical and Celestial Mechanics影響因子(影響力)




書目名稱Mathematical Aspects of Classical and Celestial Mechanics影響因子(影響力)學(xué)科排名




書目名稱Mathematical Aspects of Classical and Celestial Mechanics網(wǎng)絡(luò)公開度




書目名稱Mathematical Aspects of Classical and Celestial Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Aspects of Classical and Celestial Mechanics被引頻次




書目名稱Mathematical Aspects of Classical and Celestial Mechanics被引頻次學(xué)科排名




書目名稱Mathematical Aspects of Classical and Celestial Mechanics年度引用




書目名稱Mathematical Aspects of Classical and Celestial Mechanics年度引用學(xué)科排名




書目名稱Mathematical Aspects of Classical and Celestial Mechanics讀者反饋




書目名稱Mathematical Aspects of Classical and Celestial Mechanics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:10:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:06:45 | 只看該作者
地板
發(fā)表于 2025-3-22 06:43:42 | 只看該作者
5#
發(fā)表于 2025-3-22 10:50:56 | 只看該作者
6#
發(fā)表于 2025-3-22 13:52:53 | 只看該作者
978-3-642-06647-4Springer-Verlag Berlin Heidelberg 2006
7#
發(fā)表于 2025-3-22 19:39:35 | 只看該作者
8#
發(fā)表于 2025-3-23 00:47:15 | 只看該作者
The n-Body Problem,Suppose that two points (., .) and (., .) interact with each other with potential energy .(|. - .|), so that the equations of motion have the form
9#
發(fā)表于 2025-3-23 02:07:43 | 只看該作者
Symmetry Groups and Order Reduction,Let (., .) be a Lagrangian system and . a smooth field on .. The field . gives rise to the one-parameter group . of diffeomorphisms . : . → . defined by the differential equation
10#
發(fā)表于 2025-3-23 05:47:00 | 只看該作者
Variational Principles and Methods,One of the fundamental objects of classical mechanics is a Lagrangian system - a pair (., .), where . is a smooth manifold (the configuration space of the mechanical system), and . a smooth function on the tangent bundle . (the Lagrange function or Lagrangian).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
恩施市| 喜德县| 嘉义县| 溆浦县| 津南区| 新兴县| 古蔺县| 安国市| 开江县| 雷波县| 会东县| 高尔夫| 德阳市| 临洮县| 望江县| 黎城县| 钟山县| 东海县| 乐山市| 安义县| 滦南县| 苍山县| 庆城县| 定襄县| 安达市| 景东| 汝南县| 新营市| 佛教| 农安县| 色达县| 棋牌| 五寨县| 万载县| 会同县| 都兰县| 长白| 台北县| 宁河县| 青铜峡市| 加查县|