找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory; ICRAPAM 2018, New De Naokant Deo,Vijay Gupta,P. N. Agrawal

[復(fù)制鏈接]
樓主: CHORD
21#
發(fā)表于 2025-3-25 05:50:20 | 只看該作者
Conference proceedings 2020matics (ICRAPAM), held at Delhi Technological University, India, on 23–25 October 2018. Divided into two volumes, it discusses major topics in mathematical analysis and its applications, and demonstrates the versatility and inherent beauty of analysis. It also shows the use of analytical techniques
22#
發(fā)表于 2025-3-25 10:33:00 | 只看該作者
Exact Solution for Mixed Integral Equations by Method of Bernoulli Polynomials,convert the integral equation into the algebraic equation using of Bernoulli matrix equation. Finally, there are some numerical results that have been given for illustrating the efficiency and exactness of this method.
23#
發(fā)表于 2025-3-25 15:23:31 | 只看該作者
24#
發(fā)表于 2025-3-25 17:23:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:01:51 | 只看該作者
On Cliques and Clique Chromatic Numbers in Line, Lict and Lictact Graphs, incident to .; and two vertices in . be adjacent if they are adjacent or incident elements of .. In this paper, we establish results on cliques and clique chromatic numbers in line, lict and litact graphs of any graph.
26#
發(fā)表于 2025-3-26 03:03:21 | 只看該作者
27#
發(fā)表于 2025-3-26 07:06:34 | 只看該作者
28#
發(fā)表于 2025-3-26 12:19:08 | 只看該作者
Study on a Free Boundary Problem Arising in Porous Media,ial differential equation arising as a governing equation for this problem. The SLM is a newly developed method, which is a very efficient and reliable method to handle nonlinear problems. The numerical and the graphical representation of the solution has been discussed using MATLAB under the certain valid assumption.
29#
發(fā)表于 2025-3-26 13:46:54 | 只看該作者
30#
發(fā)表于 2025-3-26 20:21:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乡宁县| 崇礼县| 灵寿县| 开远市| 神池县| 民丰县| 循化| 泗洪县| 平山县| 岐山县| 乡城县| 防城港市| 中西区| 玉环县| 景东| 阳新县| 平遥县| 额敏县| 石门县| 赣州市| 隆子县| 庐江县| 深水埗区| 会泽县| 新乡县| 迭部县| 阿拉善左旗| 旌德县| 双柏县| 南昌市| 左贡县| 朔州市| 马龙县| 维西| 青浦区| 那坡县| 博湖县| 平陆县| 喀喇沁旗| 辉县市| 全州县|