找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Massively Parallel Evolutionary Computation on GPGPUs; Shigeyoshi Tsutsui,Pierre Collet Book 2013 Springer-Verlag Berlin Heidelberg 2013 A

[復(fù)制鏈接]
樓主: 作業(yè)
21#
發(fā)表于 2025-3-25 07:17:46 | 只看該作者
ACO with Tabu Search on GPUs for Fast Solution of the QAPce Architecture (CUDA). In TS on QAPs, there are . neighbors in a candidate solution. These TS moves form two groups based on computing cost. In one group, the computing of the move cost is ., and in the other group the computing of the move cost is .. We compute these groups of moves in parallel by
22#
發(fā)表于 2025-3-25 08:44:05 | 只看該作者
New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Searchnderlying operation relates to systolic computing and is inspired by the systolic contraction of the heart that makes possible blood circulation. The algorithm, called Systolic Genetic Search (SGS), is based on the synchronous circulation of solutions through a grid of processing units and tries to
23#
發(fā)表于 2025-3-25 12:38:11 | 只看該作者
24#
發(fā)表于 2025-3-25 16:04:44 | 只看該作者
25#
發(fā)表于 2025-3-25 20:13:17 | 只看該作者
Implementation Techniques for Massively Parallel Multi-objective Optimization as multi-objective optimization (MOO). It has been a challenge for researchers and practitioners to find solutions for MOO problems. Many techniques have been developed in operations research and other related disciplines, but the complexity of MOO problems such as large search spaces, uncertainty,
26#
發(fā)表于 2025-3-26 03:50:31 | 只看該作者
Data Mining Using Parallel Multi-objective Evolutionary Algorithms on Graphics Processing Unitso a company under resource constraints. In this chapter, we first formulate this learning problem as a constrained optimization problem and then convert it to an unconstrained multi-objective optimization problem (MOP), which can be handled by some multi-objective evolutionary algorithms (MOEAs). Ho
27#
發(fā)表于 2025-3-26 07:27:33 | 只看該作者
Large-Scale Bioinformatics Data Mining with Parallel Genetic Programming on Graphics Processing Unitiple genetic programming (GP) runs on a graphics processing unit (GPU) hardware, each with a population of five million programs both winnows (selects) useful variables from the chaff and evolves small (three inputs) data models. The SPMD CUDA interpreter exploits the GPU’s single instruction multip
28#
發(fā)表于 2025-3-26 10:06:18 | 只看該作者
29#
發(fā)表于 2025-3-26 14:09:48 | 只看該作者
30#
發(fā)表于 2025-3-26 17:37:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 19:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿坝| 永济市| 淄博市| 克东县| 诏安县| 承德县| 丰都县| 翼城县| 南木林县| 会同县| 阿拉善盟| 吉林省| 莫力| 曲麻莱县| 葵青区| 珠海市| 宣城市| 桦甸市| 赤壁市| 文安县| 阿图什市| 巍山| 庆云县| 宁武县| 丽江市| 深泽县| 荥经县| 汪清县| 丹巴县| 宣威市| 鄱阳县| 封开县| 清苑县| 十堰市| 富源县| 祁连县| 扎鲁特旗| 武川县| 本溪| 沾益县| 诸城市|