找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Massively Parallel Evolutionary Computation on GPGPUs; Shigeyoshi Tsutsui,Pierre Collet Book 2013 Springer-Verlag Berlin Heidelberg 2013 A

[復(fù)制鏈接]
樓主: 作業(yè)
21#
發(fā)表于 2025-3-25 07:17:46 | 只看該作者
ACO with Tabu Search on GPUs for Fast Solution of the QAPce Architecture (CUDA). In TS on QAPs, there are . neighbors in a candidate solution. These TS moves form two groups based on computing cost. In one group, the computing of the move cost is ., and in the other group the computing of the move cost is .. We compute these groups of moves in parallel by
22#
發(fā)表于 2025-3-25 08:44:05 | 只看該作者
New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Searchnderlying operation relates to systolic computing and is inspired by the systolic contraction of the heart that makes possible blood circulation. The algorithm, called Systolic Genetic Search (SGS), is based on the synchronous circulation of solutions through a grid of processing units and tries to
23#
發(fā)表于 2025-3-25 12:38:11 | 只看該作者
24#
發(fā)表于 2025-3-25 16:04:44 | 只看該作者
25#
發(fā)表于 2025-3-25 20:13:17 | 只看該作者
Implementation Techniques for Massively Parallel Multi-objective Optimization as multi-objective optimization (MOO). It has been a challenge for researchers and practitioners to find solutions for MOO problems. Many techniques have been developed in operations research and other related disciplines, but the complexity of MOO problems such as large search spaces, uncertainty,
26#
發(fā)表于 2025-3-26 03:50:31 | 只看該作者
Data Mining Using Parallel Multi-objective Evolutionary Algorithms on Graphics Processing Unitso a company under resource constraints. In this chapter, we first formulate this learning problem as a constrained optimization problem and then convert it to an unconstrained multi-objective optimization problem (MOP), which can be handled by some multi-objective evolutionary algorithms (MOEAs). Ho
27#
發(fā)表于 2025-3-26 07:27:33 | 只看該作者
Large-Scale Bioinformatics Data Mining with Parallel Genetic Programming on Graphics Processing Unitiple genetic programming (GP) runs on a graphics processing unit (GPU) hardware, each with a population of five million programs both winnows (selects) useful variables from the chaff and evolves small (three inputs) data models. The SPMD CUDA interpreter exploits the GPU’s single instruction multip
28#
發(fā)表于 2025-3-26 10:06:18 | 只看該作者
29#
發(fā)表于 2025-3-26 14:09:48 | 只看該作者
30#
發(fā)表于 2025-3-26 17:37:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 04:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五河县| 曲松县| 宝丰县| 安塞县| 墨竹工卡县| 柯坪县| 宁阳县| 佛山市| 鹤山市| 朝阳区| 突泉县| 富平县| 南皮县| 安溪县| 乐平市| 河北区| 阳曲县| 潼关县| 青田县| 昔阳县| 宾川县| 瑞金市| 临漳县| 信宜市| 福建省| 毕节市| 华安县| 荥阳市| 花莲市| 清流县| 象州县| 广南县| 仙居县| 博兴县| 黄冈市| 仁化县| 霍城县| 平遥县| 新昌县| 邹平县| 罗山县|