找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Markov Random Field Modeling in Image Analysis; Stan Z. Li Book 20012nd edition Springer Japan 2001 Excel.Markov Random Field.Markov model

[復(fù)制鏈接]
查看: 41093|回復(fù): 41
樓主
發(fā)表于 2025-3-21 20:01:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Markov Random Field Modeling in Image Analysis
編輯Stan Z. Li
視頻videohttp://file.papertrans.cn/625/624646/624646.mp4
概述Valuable reference for researchers.Covers deeply a broad range of Markov Random Field Theory
叢書名稱Computer Science Workbench
圖書封面Titlebook: Markov Random Field Modeling in Image Analysis;  Stan Z. Li Book 20012nd edition Springer Japan 2001 Excel.Markov Random Field.Markov model
描述Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. The book covers the following parts essential to the subject: introduction to fundamental theories, formulations of MRF vision models, MRF parameter estimation, and optimization algorithms. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This second edition includes the most important progress in Markov modeling in image analysis in recent years such as Markov modeling of images with "macro" patterns (e.g. the FRAME model), Markov chain Monte Carlo (MCMC) methods, reversible jump MCMC. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses
出版日期Book 20012nd edition
關(guān)鍵詞Excel; Markov Random Field; Markov model; Optical flow; Ringe; algorithms; calculus; computer vision; image
版次2
doihttps://doi.org/10.1007/978-4-431-67044-5
isbn_ebook978-4-431-67044-5Series ISSN 1431-1488
issn_series 1431-1488
copyrightSpringer Japan 2001
The information of publication is updating

書目名稱Markov Random Field Modeling in Image Analysis影響因子(影響力)




書目名稱Markov Random Field Modeling in Image Analysis影響因子(影響力)學(xué)科排名




書目名稱Markov Random Field Modeling in Image Analysis網(wǎng)絡(luò)公開度




書目名稱Markov Random Field Modeling in Image Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Markov Random Field Modeling in Image Analysis被引頻次




書目名稱Markov Random Field Modeling in Image Analysis被引頻次學(xué)科排名




書目名稱Markov Random Field Modeling in Image Analysis年度引用




書目名稱Markov Random Field Modeling in Image Analysis年度引用學(xué)科排名




書目名稱Markov Random Field Modeling in Image Analysis讀者反饋




書目名稱Markov Random Field Modeling in Image Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:12:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:38:10 | 只看該作者
地板
發(fā)表于 2025-3-22 05:12:14 | 只看該作者
,Minimization — Local Methods,ry diffi-cult in vision problems due to the complexity caused by interactions between labels. Therefore, optimal solutions are usually computed by using some it-erative search techniques. This chapter describes techniques for finding local minima and discusses related issues.
5#
發(fā)表于 2025-3-22 10:27:11 | 只看該作者
1431-1488 s for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. The book covers t
6#
發(fā)表于 2025-3-22 13:04:41 | 只看該作者
7#
發(fā)表于 2025-3-22 21:08:25 | 只看該作者
Discontinuity-Adaptivity Model and Robust Estimation,previous chapter. This chapter provides a comparative study (Li 1995a) of the two kinds of models based on the results about the DA model and presents an algorithm (Li 1996b) to improve the stability of the robust M-estimator to the initialization.
8#
發(fā)表于 2025-3-22 22:11:11 | 只看該作者
9#
發(fā)表于 2025-3-23 02:32:18 | 只看該作者
Introduction, the optimal solution to a vision problem and how to find the optimal solution. The reason for defining the solution in an . sense is due to various uncertainties in vision processes. It may be difficult to find the perfect solution, so we usually look for an optimal one in the sense that an objective in which constraints are encoded is optimized.
10#
發(fā)表于 2025-3-23 08:12:39 | 只看該作者
,Minimization — Global Methods,l if the energy function contains many local minima. Whereas methods for local minimization are quite mature with commercial software on market, the study of global minimization is still young. There are no efficient algorithms which guarantee to find globally minimal solutions as are there for local minimization.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尖扎县| 襄城县| 屯留县| 黑龙江省| 安塞县| 汾阳市| 交口县| 崇礼县| 福建省| 山阳县| 芷江| 巨鹿县| 乌鲁木齐县| 西安市| 深水埗区| 吉隆县| 利辛县| 白山市| 琼结县| 武夷山市| 方正县| 五常市| 仙居县| 保德县| 达州市| 太原市| 洞口县| 临洮县| 三明市| 新蔡县| 玛纳斯县| 松滋市| 成武县| 汝南县| 余江县| 新乡县| 肥东县| 汝南县| 庆安县| 晋江市| 无为县|