找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Markov Chains and Stochastic Stability; Sean P. Meyn,Richard L. Tweedie Book 1993 Springer-Verlag London Limited 1993 Drift.Markov.Markov

[復制鏈接]
樓主: 快樂
31#
發(fā)表于 2025-3-26 23:47:10 | 只看該作者
32#
發(fā)表于 2025-3-27 04:10:32 | 只看該作者
https://doi.org/10.1007/978-1-4471-3267-7Drift; Markov; Markov chain; Markov model; Symbol; Transit; calculus; communication; control; control enginee
33#
發(fā)表于 2025-3-27 08:38:49 | 只看該作者
HeuristicsThis book is about Markovian models, and particularly about the structure and stability of such models. We develop a theoretical basis by studying Markov chains in very general contexts; and we develop, as systematically as we can, the applications of this theory to applied models in systems engineering, in operations research, and in time series.
34#
發(fā)表于 2025-3-27 11:10:22 | 只看該作者
Markov ModelsThe results presented in this book have been written in the desire that practitioners will use them. We have tried therefore to illustrate the use of the theory in a systematic and accessible way, and so this book concentrates not only on the theory of general space Markov chains, but on the application of that theory in considerable detail.
35#
發(fā)表于 2025-3-27 15:34:36 | 只看該作者
Transition ProbabilitiesAs with all stochastic processes, there are two directions from which to approach the formal definition of a Markov chain.
36#
發(fā)表于 2025-3-27 19:47:51 | 只看該作者
37#
發(fā)表于 2025-3-28 00:42:39 | 只看該作者
38#
發(fā)表于 2025-3-28 02:54:04 | 只看該作者
39#
發(fā)表于 2025-3-28 06:42:57 | 只看該作者
40#
發(fā)表于 2025-3-28 13:22:31 | 只看該作者
Invariance and TightnessIn one of our heuristic descriptions of stability, in Section 1.3, we outlined a picture of a chain settling down to a stable regime independent of its initial starting point: we will show in Part III that positive Harris chains do precisely this, and one role of π is to describe the final stochastic regime of the chain, as we have seen.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
调兵山市| 余江县| 邹城市| 龙门县| 六盘水市| 灵武市| 慈利县| 射阳县| 资中县| 香格里拉县| 九寨沟县| 托克托县| 榆林市| 永济市| 盈江县| 荆门市| 凉山| 平顶山市| 通许县| 故城县| 武夷山市| 阜城县| 东兰县| 师宗县| 南乐县| 禄丰县| 台山市| 紫阳县| 平度市| 专栏| 华安县| 镇坪县| 贵阳市| 定兴县| 喀什市| 梅州市| 马龙县| 靖远县| 新和县| 荥经县| 纳雍县|