找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Marine Protists; Diversity and Dynami Susumu Ohtsuka,Toshinobu Suzaki,Fabrice Not Book 2015 Springer Japan 2015 Aquatic ecosystem.Chemosynt

[復制鏈接]
樓主: 街道
51#
發(fā)表于 2025-3-30 09:13:36 | 只看該作者
Stuart D. Syml annotation is time-consuming and requires specialized expertise. Semi-supervised segmentation methods that leverage both labeled and unlabeled data have shown promise, with contrastive learning emerging as a particularly effective approach. In this paper, we propose a contrastive learning strategy
52#
發(fā)表于 2025-3-30 13:12:07 | 只看該作者
53#
發(fā)表于 2025-3-30 19:54:50 | 只看該作者
Katsunori Kimotols could be leveraged by utilizing either transfer learning or semi-supervised learning on a limited number of strong labels from manual annotation. However, over-fitting could potentially arise due to the small data size. This work develops a dual-branch network to improve segmentation on OOD data
54#
發(fā)表于 2025-3-31 00:23:29 | 只看該作者
Noritoshi Suzuki,Fabrice Notre repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesio
55#
發(fā)表于 2025-3-31 04:01:26 | 只看該作者
Yasuhide Nakamura,Noritoshi Suzuki availability of well-labeled data. In practice, it is a great challenge to obtain a large high-quality labeled dataset, especially for the medical image segmentation task, which generally needs pixel-wise labels, and the inaccurate label (noisy label) may significantly degrade the segmentation perf
56#
發(fā)表于 2025-3-31 05:03:55 | 只看該作者
57#
發(fā)表于 2025-3-31 13:12:16 | 只看該作者
Takashi Kamiyamare repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesio
58#
發(fā)表于 2025-3-31 16:32:19 | 只看該作者
59#
發(fā)表于 2025-3-31 18:43:06 | 只看該作者
60#
發(fā)表于 2025-3-31 21:54:58 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-27 06:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南华县| 博爱县| 增城市| 象州县| 岳池县| 西平县| 安仁县| 洛浦县| 上饶市| 朝阳市| 定边县| 琼结县| 东源县| 勃利县| 新泰市| 湖口县| 蒲城县| 子长县| 阿拉善右旗| 岳阳县| 武城县| 鲁山县| 成武县| 阿拉尔市| 正定县| 太原市| 东丽区| 庆云县| 聂拉木县| 长寿区| 思茅市| 武隆县| 兴山县| 永定县| 芦山县| 澄江县| 馆陶县| 高安市| 江陵县| 宝丰县| 临沭县|