找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Marginal Space Learning for Medical Image Analysis; Efficient Detection Yefeng Zheng,Dorin Comaniciu Book 2014 Springer Science+Business M

[復制鏈接]
樓主: ARGOT
31#
發(fā)表于 2025-3-26 21:28:38 | 只看該作者
32#
發(fā)表于 2025-3-27 03:08:58 | 只看該作者
33#
發(fā)表于 2025-3-27 07:18:37 | 只看該作者
Marginal Space Learning,s such as local intensity and gradient. The efficiency of steerable features comes from the fact that much fewer points (defined by the sampling pattern) are needed for manipulation, in comparison to the whole volume.
34#
發(fā)表于 2025-3-27 09:44:51 | 只看該作者
Constrained Marginal Space Learning,ion speed up to 14 times relative to the original MSL, while achieving comparable or better detection accuracy. It takes less than half a second to detect a typical 3D anatomical structure in a volume.
35#
發(fā)表于 2025-3-27 16:05:42 | 只看該作者
36#
發(fā)表于 2025-3-27 18:35:16 | 只看該作者
Yefeng Zheng,Dorin Comaniciuulate apoptosis, including the role ofFas, FasL, and other TNF family members in apoptosis and homeostatic regulation of immune response. Recently described spl978-1-4899-0276-4978-1-4899-0274-0Series ISSN 0065-2598 Series E-ISSN 2214-8019
37#
發(fā)表于 2025-3-28 00:21:01 | 只看該作者
Book 2014fication, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number
38#
發(fā)表于 2025-3-28 02:10:08 | 只看該作者
Book 2014tions of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness..
39#
發(fā)表于 2025-3-28 07:40:55 | 只看該作者
Part-Based Object Detection and Segmentation,trate the robustness and accuracy of part-based object detection and segmentation on three applications, namely, left atrium segmentation in 3D C-arm CT, left ventricle detection in 2D MRI, and aorta segmentation in 3D C-arm CT.
40#
發(fā)表于 2025-3-28 10:56:18 | 只看該作者
Optimal Mean Shape for Nonrigid Object Detection and Segmentation, more accurate initialization than the mean shapes derived through a bounding box. Experiments on aortic valve landmark detection and whole-heart segmentation demonstrate the advantages of the approach.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
夏津县| 志丹县| 江华| 红原县| 中西区| 临海市| 新蔡县| 石林| 广州市| 托克托县| 嘉峪关市| 龙南县| 鲁甸县| 秀山| 通河县| 宜城市| 金平| 木兰县| 逊克县| 寿光市| 淮滨县| 宁强县| 咸阳市| 无极县| 龙井市| 崇义县| 左云县| 抚顺市| 洮南市| 建昌县| 北安市| 南木林县| 大埔区| 和平县| 麻城市| 三台县| 宜良县| 肇庆市| 中牟县| 古田县| 磴口县|