找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Manned Systems Design; Methods, Equipment, J. Moraal,K.-F. Kraiss Book 1981 Plenum Press, New York 1981 complex system.design.design proce

[復(fù)制鏈接]
樓主: abandon
41#
發(fā)表于 2025-3-28 16:03:48 | 只看該作者
42#
發(fā)表于 2025-3-28 21:37:59 | 只看該作者
43#
發(fā)表于 2025-3-29 00:39:24 | 只看該作者
44#
發(fā)表于 2025-3-29 05:03:58 | 只看該作者
Robert C. Willigessure the size of the error but also to give an idea of the error distribution over the mesh. Most a-posteriori error estimates for finite element methods use the residual of the approximate solution. Another is obtained from higher order derivatives of the unknown solution through a currently availa
45#
發(fā)表于 2025-3-29 10:32:34 | 只看該作者
nclassical criteria have been chosen as the witness of nonclassicality, namely Vogel’s, Klyshko’s and Agarwal and Tara criteria. The states tailored by the filtration process violate all the three nonclassical criteria, thus exhibit their nonclassicality.
46#
發(fā)表于 2025-3-29 13:24:05 | 只看該作者
47#
發(fā)表于 2025-3-29 19:26:42 | 只看該作者
48#
發(fā)表于 2025-3-29 21:10:24 | 只看該作者
Karl-Friedrich Kraiss detail. Recent theories based on path integral approaches (PIA) are reviewed, which aim at quantizing TDHF in order to describe stationary vibrational states and subbarrier fusion. The relationship of quantized ATDHF to PIA is explored in the case of bound vibrations. A derivation of the quantizati
49#
發(fā)表于 2025-3-30 02:14:53 | 只看該作者
Walter W. Wierwille detail. Recent theories based on path integral approaches (PIA) are reviewed, which aim at quantizing TDHF in order to describe stationary vibrational states and subbarrier fusion. The relationship of quantized ATDHF to PIA is explored in the case of bound vibrations. A derivation of the quantizati
50#
發(fā)表于 2025-3-30 04:05:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 08:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峡江县| 囊谦县| 前郭尔| 清水县| 美姑县| 延寿县| 榆树市| 迁西县| 哈巴河县| 贡觉县| 乐安县| 兴仁县| 灵川县| 布拖县| 鹿邑县| 鲁山县| 淮滨县| 云和县| 台东县| 新郑市| 梅河口市| 岑巩县| 漳州市| 温州市| 惠水县| 当阳市| 哈密市| 南安市| 遂平县| 镇平县| 太白县| 察雅县| 巨鹿县| 梅州市| 平利县| 云林县| 老河口市| 加查县| 姚安县| 伊宁县| 古浪县|