找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Manifolds, Vector Fields, and Differential Forms; An Introduction to D Gal Gross,Eckhard Meinrenken Textbook 2023 The Editor(s) (if applica

[復制鏈接]
樓主: 表范圍
11#
發(fā)表于 2025-3-23 13:18:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:54:06 | 只看該作者
Gal Gross,Eckhard Meinrenkeno Nuprl in order to prove a version of Brouwer’s continuity principle, as well as choice sequences in order to prove truncated versions of the axiom of choice and of Brouwer’s bar induction principle. This paper illustrate the process of extending Nuprl with versions of the axiom of choice.
13#
發(fā)表于 2025-3-23 21:10:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:26:52 | 只看該作者
15#
發(fā)表于 2025-3-24 04:21:54 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:01 | 只看該作者
17#
發(fā)表于 2025-3-24 12:23:53 | 只看該作者
Manifolds,One of the goals of this book is to develop the theory of manifolds in intrinsic terms, although we may occasionally use immersions or embeddings into Euclidean space in order to illustrate concepts. In physics terminology, we will formulate the theory of manifolds in terms that are “manifestly coordinate-free.”
18#
發(fā)表于 2025-3-24 18:28:26 | 只看該作者
Smooth Maps,A real-valued function on an open subset . is called . .?∈?. if it is infinitely differentiable on an open neighborhood of .. It is called . . if it is smooth at all points of .. The notion of smooth functions on open subsets of Euclidean spaces carries over to manifolds: A function is smooth if its expression in local coordinates is smooth.
19#
發(fā)表于 2025-3-24 21:04:50 | 只看該作者
Submanifolds,Let . be a manifold of dimension .. We will define a .-dimensional submanifold .???. to be a subset that looks locally like ., regarded as the coordinate subspace defined by ..?=???=?..?=?0.
20#
發(fā)表于 2025-3-25 03:12:59 | 只看該作者
Vector Fields,A vector field on a manifold may be regarded as a family of tangent vectors ..?∈?... for .?∈?., depending smoothly on the base points .?∈?.. One way of making precise what is meant by “depending smoothly” is the following.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 08:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新建县| 织金县| 兴宁市| 阳高县| 石城县| 饶平县| 娄底市| 石景山区| 蚌埠市| 大宁县| 南阳市| 密山市| 阳城县| 右玉县| 韶山市| 平乐县| 平乡县| 桐梓县| 晋江市| 赞皇县| 滨州市| 翼城县| 福安市| 威信县| 上虞市| 泾川县| 武义县| 永顺县| 会理县| 满洲里市| 婺源县| 黔西| 中江县| 彩票| 达拉特旗| 辉南县| 监利县| 曲水县| 柳河县| 抚松县| 清徐县|