找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Manifolds, Sheaves, and Cohomology; Torsten Wedhorn Textbook 2016 Springer Fachmedien Wiesbaden 2016 Bundles.Cohomology.Lie Groups.Manifol

[復(fù)制鏈接]
樓主: TOUT
51#
發(fā)表于 2025-3-30 11:42:16 | 只看該作者
52#
發(fā)表于 2025-3-30 13:15:37 | 只看該作者
Torsten Wedhorn to the optimization of insurance contracts. Good knowledge of basic probability and statistics as well as of basic general mathematics is a prerequisite for comfortably reading and working with the present vol978-3-642-43016-9978-3-642-33590-7Series ISSN 1431-8598 Series E-ISSN 2197-1773
53#
發(fā)表于 2025-3-30 16:48:08 | 只看該作者
2509-9310 r master students in mathematics.Includes supplementary mate.This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model.
54#
發(fā)表于 2025-3-30 22:39:38 | 只看該作者
55#
發(fā)表于 2025-3-31 04:39:56 | 只看該作者
56#
發(fā)表于 2025-3-31 06:22:24 | 只看該作者
Cohomology of Constant Sheaves, sheaves for continuous maps between arbitrary topological spaces in Sect.?11.3. We conclude the chapter with some easy applications...: Let . always be a?commutative ring and let . be a?topological space.
57#
發(fā)表于 2025-3-31 11:32:47 | 只看該作者
Appendix D: Homological Algebra,?central notion for the definition of cohomology: injective modules and K-injective complexes. Until then all notions were explained for modules over a?ring, but in fact they make sense much more generally in arbitrary abelian categories. This is explained in the last section of this appendix.
58#
發(fā)表于 2025-3-31 16:56:16 | 只看該作者
59#
發(fā)表于 2025-3-31 21:10:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 义马市| 庆元县| 荥经县| 嘉峪关市| 泰和县| 利川市| 金阳县| 厦门市| 安平县| 浮山县| 清镇市| 清流县| 昌平区| 孟村| 巨野县| 河间市| 万宁市| 乌兰察布市| 马山县| 马公市| 张家口市| 巨野县| 西峡县| 荔波县| 高邑县| 湘潭县| 马关县| 库车县| 九江市| 绵阳市| SHOW| 临清市| 岳池县| 班玛县| 苗栗县| 木兰县| 西青区| 土默特左旗| 雷州市| 惠来县|