找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Manifolds all of whose Geodesics are Closed; Arthur L. Besse Book 1978 Springer-Verlag Berlin Heidelberg 1978 Geod?tische Linie.Manifolds.

[復(fù)制鏈接]
樓主: 粘上
11#
發(fā)表于 2025-3-23 11:31:47 | 只看該作者
12#
發(fā)表于 2025-3-23 14:24:29 | 只看該作者
Harmonic Manifolds,Let . be a ROSS (see 3.16). The fact that its isometry group is transitive on . or on pairs of equidistant points implies that a lot of things do not really depend on . and . in . but only on the distance between them ?(.). We shall mainly consider two objects.
13#
發(fā)表于 2025-3-23 20:29:43 | 只看該作者
Foliations by Geodesic Circles,A.1. Let . be a .-manifold with a .-foliation by circles. We prove the following theorem of A.W. Wadsley [WY 2]:
14#
發(fā)表于 2025-3-23 22:46:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:56:52 | 只看該作者
,Blaschke Manifolds and Blaschke’s Conjecture,tance function and the notion of a segment; recall that segments are necessarily geodesies and locally unique. We define the cut-value and the cut-point of a geodesic. We recall the strict triangle inequality and the acute angle property. Finally we define what a manifold with spherical cut-locus is.
16#
發(fā)表于 2025-3-24 07:33:10 | 只看該作者
On the Topology of SC- and P-Manifolds,s of .-manifolds which are not isometric to a CROSS, the so-called Zoll manifolds. Observe, however, that the underlying differentiable manifold in these examples is the standard sphere. In this chapter we will prove that, at least topologically, the .-manifolds are not very different from CROSSes. The main result we prove is the following.
17#
發(fā)表于 2025-3-24 10:53:35 | 只看該作者
https://doi.org/10.1007/978-3-642-61876-5Geod?tische Linie; Manifolds; Riemannian geometry; Riemannian manifold; Riemannsche Mannigfaltigkeit; cur
18#
發(fā)表于 2025-3-24 17:33:16 | 只看該作者
19#
發(fā)表于 2025-3-24 19:50:59 | 只看該作者
Basic Facts about the Geodesic Flow,It only assumes a basic knowledge of differential geometry such as manifolds, differentiable maps, the tangent functor, exterior differential forms and the exterior differential, vector fields and the Lie derivative. Good references for this material are [AM], [GO 1], [SG], [WR 3]..It does not conta
20#
發(fā)表于 2025-3-24 23:44:27 | 只看該作者
The Manifold of Geodesics,the manifold of geodesies . for a .-manifold and we relate its tangent spaces to normal Jacobi fields. The existence of a nondegenerate closed two-form on .. is the most striking fact. This form endows the manifold with a symplectic structure. Using the fact that the unit tangent bundle of . is fibe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 22:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蛟河市| 湘潭县| 兴山县| 墨竹工卡县| 成武县| 西贡区| 桃园市| 元氏县| 瓦房店市| 龙山县| 平原县| 沭阳县| 蕲春县| 林甸县| 闻喜县| 敦煌市| 都兰县| 定州市| 高碑店市| 普兰县| 江安县| 中牟县| 泸定县| 厦门市| 崇信县| 江西省| 安西县| 禄劝| 集安市| 舒城县| 潞西市| 营口市| 鹤壁市| 青海省| 颍上县| 大埔县| 安多县| 越西县| 五家渠市| 安陆市| 石狮市|