找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Manifold Learning; Model Reduction in E David Ryckelynck,Fabien Casenave,Nissrine Akkari Book‘‘‘‘‘‘‘‘ 2024 The Editor(s) (if applicable) an

[復(fù)制鏈接]
查看: 37455|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:01:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Manifold Learning
副標題Model Reduction in E
編輯David Ryckelynck,Fabien Casenave,Nissrine Akkari
視頻videohttp://file.papertrans.cn/624/623388/623388.mp4
概述Shows how manifold learning uses model order reduction and deep learning for training models in continuum mechanics.Discusses high dimensional input variables in mechanical models, in particular for i
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Manifold Learning; Model Reduction in E David Ryckelynck,Fabien Casenave,Nissrine Akkari Book‘‘‘‘‘‘‘‘ 2024 The Editor(s) (if applicable) an
描述This Open Access book reviews recent theoretical and numerical developments in nonlinear model order reduction in continuum mechanics, being addressed to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning algorithms. The book involves a survey of key methods of model order reduction applied to model-based engineering and digital twining, by learning linear or nonlinear latent spaces..Projection-based reduced order models are the projection of mechanical equations on a latent space that have been learnt from both synthetic data and experimental data. Various descriptions and representations of structured data for model reduction are presented in the applications and survey chapters. Image-based digital twins are developed in a reduced setting. Reduced order models of as-manufactured components predict the mechanical effects of shape variations. A similar workflow is extended to multiphysics or coupled problems, with high dimensional input fields
出版日期Book‘‘‘‘‘‘‘‘ 2024
關(guān)鍵詞Computational Mechanics; Data Augmentation; Deep Learning; Digital Twining; Dimensionality Reduction; Gen
版次1
doihttps://doi.org/10.1007/978-3-031-52764-7
isbn_softcover978-3-031-52766-1
isbn_ebook978-3-031-52764-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Editor(s) (if applicable) and The Author(s) 2024
The information of publication is updating

書目名稱Manifold Learning影響因子(影響力)




書目名稱Manifold Learning影響因子(影響力)學(xué)科排名




書目名稱Manifold Learning網(wǎng)絡(luò)公開度




書目名稱Manifold Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Manifold Learning被引頻次




書目名稱Manifold Learning被引頻次學(xué)科排名




書目名稱Manifold Learning年度引用




書目名稱Manifold Learning年度引用學(xué)科排名




書目名稱Manifold Learning讀者反饋




書目名稱Manifold Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:59:01 | 只看該作者
Resources: Software and Tutorials,dustrial usage”. It is the name of a collaborative project that took place from 2018 to 2023, with the objective of developing a standard for a datamodel and basic computational treatment for reduced-order modeling in the French community.
板凳
發(fā)表于 2025-3-22 02:31:05 | 只看該作者
Industrial Application: Uncertainty Quantification in Lifetime Prediction of Turbine Blades,turbine blades, generated by the uncertainty of the temperature loading field. A complete reduced-order model workflow is detailed, and the numerical experiments make use of the codes Mordicus and genericROM introduced in Chap. 4.
地板
發(fā)表于 2025-3-22 04:55:10 | 只看該作者
5#
發(fā)表于 2025-3-22 11:40:10 | 只看該作者
6#
發(fā)表于 2025-3-22 15:29:41 | 只看該作者
https://doi.org/10.1007/978-3-031-52764-7Computational Mechanics; Data Augmentation; Deep Learning; Digital Twining; Dimensionality Reduction; Gen
7#
發(fā)表于 2025-3-22 20:41:43 | 只看該作者
8#
發(fā)表于 2025-3-22 21:14:11 | 只看該作者
Manifold Learning978-3-031-52764-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
9#
發(fā)表于 2025-3-23 03:17:23 | 只看該作者
Book‘‘‘‘‘‘‘‘ 2024 to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning alg
10#
發(fā)表于 2025-3-23 05:55:43 | 只看該作者
Learning Projection-Based Reduced-Order Models,the generalisation of the reduced order model is evaluated in the online step by using a test set of data forecast by the high-fidelity model. The test set aims also to check the computational speedups of the reduced-order model compare to the high-fidelity model.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁源县| 晋中市| 景宁| 清原| 平舆县| 富顺县| 奎屯市| 潞西市| 紫金县| 沙湾县| 虹口区| 江孜县| 宝鸡市| 崇明县| 罗山县| 剑阁县| 兴海县| 抚宁县| 南靖县| 山东省| 加查县| 宁南县| 墨脱县| 泗水县| 合肥市| 肇源县| 大田县| 深州市| 朝阳县| 大城县| 兴业县| 无锡市| 道孚县| 蓬莱市| 康保县| 云安县| 洪洞县| 玉溪市| 通化市| 惠州市| 南靖县|