找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Management of Nutritional and Metabolic Complications of Bariatric Surgery; Aparna Govil Bhasker,Nimisha Kantharia,Miloni Shah Book 2021 S

[復制鏈接]
樓主: 浮標
41#
發(fā)表于 2025-3-28 16:35:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:37:13 | 只看該作者
43#
發(fā)表于 2025-3-29 02:43:40 | 只看該作者
44#
發(fā)表于 2025-3-29 04:02:53 | 只看該作者
45#
發(fā)表于 2025-3-29 07:57:29 | 只看該作者
Mariam Lakdawala,Miloni Shah Sancheti,Nimisha Kantharia,Aparna Govil Bhaskere author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theo
46#
發(fā)表于 2025-3-29 14:17:15 | 只看該作者
Almino Cardoso Ramos,Hugo V. Coca Jimenez Carraso,Eduardo Lemos De Souza Bastose author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theo
47#
發(fā)表于 2025-3-29 18:52:26 | 只看該作者
48#
發(fā)表于 2025-3-29 23:18:16 | 只看該作者
Sarfaraz Baig,Pallawi Priya,Manjari Agarwale author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theo
49#
發(fā)表于 2025-3-30 00:01:47 | 只看該作者
50#
發(fā)表于 2025-3-30 05:11:05 | 只看該作者
Associated Co-morbid Conditions of Clinically Severe Obesity,not only in affluent societies but also in developing countries. It is associated with higher mortality and this is due to the great burden of its associated co-morbidities. These range from impaired glucose tolerance and type 2 diabetes mellitus, heart disease, dyslipidemia, cerebrovascular disease
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 11:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
镇宁| 卢湾区| 云林县| 乌兰浩特市| 惠东县| 巴塘县| 乌拉特后旗| 项城市| 普陀区| 平江县| 清徐县| 迭部县| 南乐县| 滦平县| 卢龙县| 昌都县| 辽阳市| 合阳县| 香港 | 莒南县| 庐江县| 辛集市| 盐源县| 桦川县| 武鸣县| 高邑县| 宜章县| 天水市| 德清县| 岳池县| 麻城市| 新宁县| 桑日县| 达尔| 全椒县| 安龙县| 亚东县| 富平县| 玉树县| 图木舒克市| 永登县|