找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Man-Machine Speech Communication; 18th National Confer Jia Jia,Zhenhua Ling,Zixing Zhang Conference proceedings 2024 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: DUCT
31#
發(fā)表于 2025-3-26 21:25:09 | 只看該作者
,Joint Speech and?Noise Estimation Using SNR-Adaptive Target Learning for?Deep-Learning-Based Speeche estimation network and validate the adaptability of the target learning strategy with the noise prediction branch. We demonstrate the effectiveness of our proposed method on a public benchmark, achieving a significant relative word error rate (WER) reduction of approximately 37% compared to the WER results obtained from unprocessed noisy speech.
32#
發(fā)表于 2025-3-27 01:38:40 | 只看該作者
,Accent-VITS: Accent Transfer for?End-to-End TTS,e disentanglement of accent and speaker timbre becomes be more stable and effective. Experiments on multi-accent and Mandarin datasets show that Accent-VITS achieves higher speaker similarity, accent similarity and speech naturalness as compared with a strong baseline (Demos: .).
33#
發(fā)表于 2025-3-27 08:51:37 | 只看該作者
34#
發(fā)表于 2025-3-27 10:46:18 | 只看該作者
35#
發(fā)表于 2025-3-27 16:03:02 | 只看該作者
,Semi-End-to-End Nested Named Entity Recognition from?Speech,rrors are inevitable. In the E2E approach, its annotation method poses a challenge to Automatic Speech Recognition (ASR) when Named Entities (NEs) are nested. This is because multiple special tokens without audio signals between words will exist, which may even cause ambiguity problems for NER. In t
36#
發(fā)表于 2025-3-27 21:37:33 | 只看該作者
,A Lightweight Music Source Separation Model with?Graph Convolution Network,wever, most of them primarily focus on improving their separation performance, while ignoring the issue of model size in the real-world environments. For the application in the real-world environments, in this paper, we propose a lightweight network combined with the Graph convolutional network Atte
37#
發(fā)表于 2025-3-27 23:00:11 | 只看該作者
,Joint Time-Domain and?Frequency-Domain Progressive Learning for?Single-Channel Speech Enhancement alean target, which may introduce speech distortions and limit ASR performance. Meanwhile, these methods usually focus on either the time or frequency domain, ignoring their potential connections. To tackle these problems, we propose a joint time and frequency domain progressive learning (TFDPL) meth
38#
發(fā)表于 2025-3-28 02:38:32 | 只看該作者
39#
發(fā)表于 2025-3-28 09:41:27 | 只看該作者
40#
發(fā)表于 2025-3-28 11:22:01 | 只看該作者
,Within- and Between-Class Sample Interpolation Based Supervised Metric Learning for?Speaker Verific methods may suffer from inadequate and low-quality sample pairs, resulting unsatisfactory speaker verification (SV) performance. To address this issue, we propose the data augmentation methods in the embedding space to guarantee sufficient and high-quality negative points for metric learning, terme
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 12:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
津南区| 章丘市| 额济纳旗| 四川省| 大埔县| 库伦旗| 上栗县| 繁峙县| 东乡| 元江| 乌拉特后旗| 满洲里市| 阳西县| 邓州市| 武邑县| 拉萨市| 灌南县| 萨嘎县| 阿坝县| 永丰县| 布尔津县| 犍为县| 东海县| 开封县| 舟山市| 佛教| 临湘市| 赣州市| 万山特区| 舞钢市| 嘉定区| 南江县| 阿鲁科尔沁旗| 迁安市| 高密市| 洛扎县| 阿巴嘎旗| 新密市| 北流市| 泾川县| 阿鲁科尔沁旗|