找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Making the Invisible Visible; Understanding Leader Tojo Thatchenkery,Keimei Sugiyama Book 2011 Tojo Thatchenkery and Keimei Sugiyama 2011 A

[復(fù)制鏈接]
查看: 23157|回復(fù): 48
樓主
發(fā)表于 2025-3-21 17:16:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Making the Invisible Visible
副標題Understanding Leader
編輯Tojo Thatchenkery,Keimei Sugiyama
視頻videohttp://file.papertrans.cn/622/621795/621795.mp4
圖書封面Titlebook: Making the Invisible Visible; Understanding Leader Tojo Thatchenkery,Keimei Sugiyama Book 2011 Tojo Thatchenkery and Keimei Sugiyama 2011 A
描述Making the Invisible Visible is?a study of Asian Americans in the workplace and provides a framework through which to transform the same qualities that are contributing to this invisibility phenomenon into a positive leadership approach that provides a counterweight to balance the showmanship approach to leadership.
出版日期Book 2011
關(guān)鍵詞Asia; leadership; management; minorities; minority; organization; organizations; Positive Leadership
版次1
doihttps://doi.org/10.1057/9780230339347
isbn_softcover978-1-349-28763-5
isbn_ebook978-0-230-33934-7
copyrightTojo Thatchenkery and Keimei Sugiyama 2011
The information of publication is updating

書目名稱Making the Invisible Visible影響因子(影響力)




書目名稱Making the Invisible Visible影響因子(影響力)學(xué)科排名




書目名稱Making the Invisible Visible網(wǎng)絡(luò)公開度




書目名稱Making the Invisible Visible網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Making the Invisible Visible被引頻次




書目名稱Making the Invisible Visible被引頻次學(xué)科排名




書目名稱Making the Invisible Visible年度引用




書目名稱Making the Invisible Visible年度引用學(xué)科排名




書目名稱Making the Invisible Visible讀者反饋




書目名稱Making the Invisible Visible讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:57 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamacan measure this .. That is, we want to be able to measure whether a result is interesting from a subjective point of view..With this as our goal, we formalise how to probabilistically model real-valued data by the Maximum Entropy principle, where we allow statistics on . sets of cells as background
板凳
發(fā)表于 2025-3-22 00:51:08 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamat and is costly. Recent years have seen much progress in techniques for automated fault localization, specifically using program spectra – executions of failed and passed test runs provide a basis for isolating the faults. Despite the progress, fault localization in large programs remains a challeng
地板
發(fā)表于 2025-3-22 07:14:42 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamanal costs challenge their applicability to resource-constrained environments. Taming computational costs has hitherto focused on first-order techniques, such as eliminating numerically insignificant neurons/filters through numerical contribution metric prioritizations, yielding passable improvements
5#
發(fā)表于 2025-3-22 12:19:15 | 只看該作者
6#
發(fā)表于 2025-3-22 15:13:08 | 只看該作者
7#
發(fā)表于 2025-3-22 18:50:52 | 只看該作者
8#
發(fā)表于 2025-3-22 21:36:08 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamatter suited to which topic. We use two models (AsIC, AsLT), each of which is an extension of the well known Independent Cascade (IC) and Linear Threshold (LT) models and incorporates asynchronous time delay. The model parameters are learned by maximizing the likelihood of observation, and the model
9#
發(fā)表于 2025-3-23 01:46:25 | 只看該作者
10#
發(fā)表于 2025-3-23 06:31:47 | 只看該作者
Tojo Thatchenkery,Keimei Sugiyamarovides a well-calibrated confidence (probability) to indicate the likelihood of the predicted set being correct; for example, an application may automate high-confidence predictions while manually verifying low-confidence predictions. The simplest multi-label classifier, called Binary Relevance (BR
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾阳县| 屏山县| 大理市| 石泉县| 扶绥县| 石门县| 江源县| 阳高县| 湖北省| 黎川县| 霍山县| 盐津县| 巴林右旗| 哈巴河县| 子洲县| 方正县| 金阳县| 五河县| 怀化市| 永寿县| 巴塘县| 广元市| 海淀区| 五常市| 宁晋县| 吉木乃县| 迁西县| 凤阳县| 黄平县| 禹州市| 楚雄市| 贞丰县| 康乐县| 台江县| 随州市| 九江市| 芜湖县| 阿拉善盟| 江阴市| 长泰县| 竹北市|