找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Making Transcendence Transparent; An intuitive approac Edward B. Burger,Robert Tubbs Textbook 2004 E.B. Burger and R. Tubbs 2004 complex an

[復制鏈接]
樓主: 不同
21#
發(fā)表于 2025-3-25 04:26:15 | 只看該作者
978-1-4419-1948-9E.B. Burger and R. Tubbs 2004
22#
發(fā)表于 2025-3-25 07:55:45 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not algebraic.
23#
發(fā)表于 2025-3-25 13:11:49 | 只看該作者
,2.7182818284590452353602874713…,rough this chapter sets the stage for much of what follows in our future explorations. To foreshadow the fundamental strategies to come, we open with Joseph Fourier’s 1815 clever proof of Euler’s result that . is irrational.
24#
發(fā)表于 2025-3-25 18:34:10 | 只看該作者
25#
發(fā)表于 2025-3-25 20:31:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:52 | 只看該作者
,,wer series. Specifically, we consider transcendence issues within the setting of function fields in a single variable over a finite field. While this theory has important implications in many different areas of mathematics, our goal here is to discover an object in this context that is analogous to the all-important exponential function ...
27#
發(fā)表于 2025-3-26 07:59:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:52:14 | 只看該作者
29#
發(fā)表于 2025-3-26 15:23:25 | 只看該作者
,0.1100010000000000000000010000…,mber is defined not by what it . but rather by what it is .. What will become apparent as we develop the classical theory of transcendental numbers is that every demonstration of the transcendence of a particular number is indirect—a number is shown to be transcendental by showing that it is not alg
30#
發(fā)表于 2025-3-26 17:29:09 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
买车| 台北县| 旅游| 五寨县| 大埔区| 长顺县| 新乡县| 肇州县| 喀什市| 舟山市| 扶风县| 塔河县| 西充县| 全椒县| 屏山县| 宣武区| 苏尼特左旗| 扎鲁特旗| 资源县| 库伦旗| 库尔勒市| 东乡县| 金川县| 安丘市| 蓝山县| 曲靖市| 道真| 新民市| 沾化县| 米脂县| 丰宁| 乌鲁木齐县| 尖扎县| 谢通门县| 巢湖市| 息烽县| 乌兰县| 九龙县| 娄烦县| 麦盖提县| 南木林县|