找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws; Gary Webb Book 2018 Springer International Publishing AG

[復制鏈接]
樓主: metamorphose
41#
發(fā)表于 2025-3-28 14:37:52 | 只看該作者
,Euler-Poincaré Equation Approach,wed that the equations for ideal, incompressible fluid dynamics could be derived from a variational principle in which the Lagrangian consists of the fluid kinetic energy, subject to an infinite Lie group (pseudo-Lie group) constraint, associated with the Lagrangian map (the constraint is that the L
42#
發(fā)表于 2025-3-28 19:20:02 | 只看該作者
Hamiltonian Approach,range multipliers to enforce the constraints of mass conservation; the entropy advection equation; Faraday’s equation and the so-called Lin constraint describing in part, the vorticity of the flow (i.e. Kelvin’s theorem). This leads to Hamilton’s canonical equations in terms of Clebsch potentials. T
43#
發(fā)表于 2025-3-29 02:49:01 | 只看該作者
44#
發(fā)表于 2025-3-29 04:16:58 | 只看該作者
45#
發(fā)表于 2025-3-29 09:14:06 | 只看該作者
MHD Stability,bria was investigated in the seminal paper by Bernstein et al. (.) who derived sufficient conditions for magneto-static equilibria, based on the so-called energy principle. A sufficient, but not necessary condition for magnetostatic equilibria is that the potential energy functional .(., .) satisfie
46#
發(fā)表于 2025-3-29 13:01:54 | 只看該作者
47#
發(fā)表于 2025-3-29 15:49:27 | 只看該作者
48#
發(fā)表于 2025-3-29 23:41:52 | 只看該作者
49#
發(fā)表于 2025-3-30 03:36:14 | 只看該作者
50#
發(fā)表于 2025-3-30 07:47:53 | 只看該作者
Introduction,for systems of differential equations governed by an action principle. Noether’s theorem applies to systems of Euler-Lagrange equations that are in Kovalevskaya form (e.g Olver (1993)). For other Euler-Lagrange systems, each nontrivial variational symmetry leads to a conservation law, but there is no guarantee that it is non-trivial.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
缙云县| 瑞昌市| 喀喇沁旗| 尉氏县| 兴文县| 广饶县| 花垣县| 桃园市| 兴文县| 舟曲县| 滦南县| 大悟县| 循化| 永靖县| 清苑县| 崇文区| 乳山市| 南昌市| 平定县| 乌兰察布市| 临泽县| 和平区| 平度市| 灵川县| 宝鸡市| 怀仁县| 禹城市| 泰兴市| 永安市| 莱州市| 进贤县| 噶尔县| 嘉黎县| 平果县| 兴和县| 全州县| 宝清县| 延安市| 南昌县| 绿春县| 银川市|