找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Magnetoelastic Vibrations and Stability of Magnetically Active Plates and Shells; Gevorg Y. Baghdasaryan,Marine A. Mikilyan Book 2024 The

[復制鏈接]
樓主: ANNOY
11#
發(fā)表于 2025-3-23 12:45:44 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:16 | 只看該作者
Issues of Magnetoelastic Interactions in Spherical Shells,neous magnetic field are derived. Based on them, mathematical modeling of the problem of static stability of superconducting closed spherical shell in magnetic field is done, when magnetic field is created by two parallel ring constant currents. Issues of non-contact holding of the shell by specifie
13#
發(fā)表于 2025-3-23 18:43:41 | 只看該作者
Vibrations and Stability of Magnetostrictive Rectangular Plates in a Magnetic Field, the first chapter, the issues of vibration and stability of rectangular thin plates in a magnetic field are investigated. Using Kirchhoff‘s hypothesis on non-deformable normals, the asymptotic method for integrating linear boundary value problems in a rectangular domain, and the basic principles of
14#
發(fā)表于 2025-3-23 22:26:17 | 只看該作者
15#
發(fā)表于 2025-3-24 06:06:45 | 只看該作者
Issues of Magnetoelastic Interactions in Spherical Shells,d magnetic field and stability of the shell in this state are considered. The problem of dynamic stability of superconducting shell under the influence of uniform non-stationary magnetic field is formulated and solved.
16#
發(fā)表于 2025-3-24 06:46:53 | 只看該作者
17#
發(fā)表于 2025-3-24 12:35:43 | 只看該作者
18#
發(fā)表于 2025-3-24 18:19:44 | 只看該作者
Basic Equations and Relations of Magnetoelasticity of Magnetoactive Deformable Bodies,uous medium. We also note that in this chapter, when presenting the well-known basis of the theory of magnetoelasticity of magnetoactive bodies, the methods of presentation from the monograph . are widely used.
19#
發(fā)表于 2025-3-24 19:48:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:41:07 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 04:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天镇县| 正定县| 大悟县| 城固县| 那曲县| 辽阳县| 西畴县| 平南县| 七台河市| 宁城县| 霍城县| 马关县| 塔城市| 宝应县| 鹤山市| 七台河市| 香格里拉县| 依兰县| 荣昌县| 溧阳市| 新田县| 新源县| 宁蒗| 普陀区| 巴南区| 康马县| 昌黎县| 铁岭市| 陈巴尔虎旗| 北京市| 东山县| 景东| 高要市| 乌兰浩特市| 新晃| 清原| 岚皋县| 双江| 通海县| 安塞县| 盈江县|