找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Macroeconomic Forecasting in the Era of Big Data; Theory and Practice Peter Fuleky Book 2020 Springer Nature Switzerland AG 2020 Big Data.M

[復(fù)制鏈接]
樓主: Hoover
41#
發(fā)表于 2025-3-28 17:57:19 | 只看該作者
Principal Component and Static Factor Analysisn reduction. In this chapter, we consider the forecasting problem using factor models, with special consideration to large datasets. In factor model estimation, we focus on principal component methods, and show how the estimated factors can be used to assist forecasting. Machine learning methods are
42#
發(fā)表于 2025-3-28 21:16:32 | 只看該作者
Subspace Methodsace methods are a new class of dimension reduction methods that have been found to yield precise forecasts when applied to macroeconomic and financial data. In this chapter, we review three subspace methods: subset regression, random projection regression, and compressed regression. We provide curre
43#
發(fā)表于 2025-3-28 23:47:39 | 只看該作者
Variable Selection and Feature Screeningthe ultra-high dimensionality of the feature space to a moderate size in a fast and efficient way and meanwhile retaining all the important features in the reduced feature space. This is referred to as the sure screening property. After feature screening, more sophisticated methods can be applied to
44#
發(fā)表于 2025-3-29 06:44:13 | 只看該作者
45#
發(fā)表于 2025-3-29 08:16:56 | 只看該作者
46#
發(fā)表于 2025-3-29 15:09:47 | 只看該作者
47#
發(fā)表于 2025-3-29 18:11:55 | 只看該作者
Boostingomic researches, especially when the data available is high-dimensional, i.e., the number of explanatory variables (.) is greater than the length of the sample size (.). Common approaches include factor models, the principal component analysis, and regularized regressions. However, these methods req
48#
發(fā)表于 2025-3-29 20:05:38 | 只看該作者
Density Forecastinge the accuracy of density forecasts are reviewed and calibration methods for improving the accuracy of forecasts are presented. The manuscript provides some numerical simulation tools to approximate predictive densities with a focus on parallel computing on graphical process units. Some simple examp
49#
發(fā)表于 2025-3-30 00:42:42 | 只看該作者
50#
發(fā)表于 2025-3-30 07:10:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马鞍山市| 滨海县| 蓝田县| 新宁县| 洪洞县| 云南省| 兴安县| 朝阳县| 中宁县| 嘉祥县| 墨脱县| 黄浦区| 道真| 黄梅县| 吕梁市| 广德县| 达尔| 东源县| 叙永县| 湘西| 重庆市| 河曲县| 措美县| 车致| 醴陵市| 双柏县| 徐水县| 贵阳市| 长乐市| 卢湾区| 饶河县| 商丘市| 嘉鱼县| 郎溪县| 东阳市| 滕州市| 通化市| 庆云县| 崇左市| 永仁县| 内江市|