找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Macroeconometrics and Time Series Analysis; Steven N. Durlauf,Lawrence E. Blume Book 2010 Palgrave Macmillan, a division of Macmillan Publ

[復(fù)制鏈接]
樓主: 手或腳
41#
發(fā)表于 2025-3-28 15:27:53 | 只看該作者
42#
發(fā)表于 2025-3-28 21:00:06 | 只看該作者
43#
發(fā)表于 2025-3-28 23:20:14 | 只看該作者
Bayesian time series analysis,eciation of the advantages that Bayesian inference entails. In particular, it provides us with a formal way to incorporate the prior information we often possess before seeing the data, it fits perfectly with sequential learning and decision making, and it directly leads to exact small sample result
44#
發(fā)表于 2025-3-29 04:15:43 | 只看該作者
Central limit theorems,sses in a large number of experiments. Later on, Laplace generalized his results, but it took 20th century mathematics to give an exact and complete description of this subject. So let me now describe the modern approach. We assume that for each . we have given a sequence ..,…. . of random variables
45#
發(fā)表于 2025-3-29 09:34:00 | 只看該作者
46#
發(fā)表于 2025-3-29 12:57:52 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:02 | 只看該作者
48#
發(fā)表于 2025-3-29 22:34:38 | 只看該作者
Forecasting,cisions are so important as a basis for these fields, a great deal of attention has been paid to the question of how best to forecast variables and occurrences of interest. There are several distinct types of forecasting situations, including event timing, event outcome, and time-series forecasts. E
49#
發(fā)表于 2025-3-30 01:39:38 | 只看該作者
50#
發(fā)表于 2025-3-30 06:03:12 | 只看該作者
Functional central limit theorems,s, however, a more detailed analysis is necessary. When testing for structural constancy in models, we might be interested in the temporal evolution of our sums. So for random variables . we are interested in analysing the behaviour of as a function of . for .. It is convenient to normalize the time
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同德县| 盘山县| 吉隆县| 松江区| 海阳市| 福州市| 社会| 包头市| 竹北市| 内江市| 洞口县| 凤山县| 万载县| 喀喇沁旗| 东乡| 宿迁市| 香格里拉县| 金塔县| 渑池县| 房山区| 常宁市| 黔西| 通州市| 南充市| 东城区| 紫金县| 邵东县| 神池县| 娄底市| 固安县| 广元市| 元江| 津南区| 砀山县| 昌宁县| 丰台区| 苏尼特右旗| 庆安县| 吉水县| 亚东县| 广平县|