找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine and Deep Learning in Oncology, Medical Physics and Radiology; Issam El Naqa,Martin J. Murphy Book 2022Latest edition Springer Natu

[復(fù)制鏈接]
查看: 39880|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:01:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology
編輯Issam El Naqa,Martin J. Murphy
視頻videohttp://file.papertrans.cn/621/620800/620800.mp4
概述Reference text for machine and deep learning in oncology, medical physics, and radiology.From theory to practice with examples.Provides a complete overview of the role of machine learning in radiation
圖書封面Titlebook: Machine and Deep Learning in Oncology, Medical Physics and Radiology;  Issam El Naqa,Martin J. Murphy Book 2022Latest edition Springer Natu
描述.This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members ofapplied machine learning communities..?.
出版日期Book 2022Latest edition
關(guān)鍵詞Machine Learning; Deep Learning; Artificial Intelligence; Medical Physics; Image Analysis; Decision Suppo
版次2
doihttps://doi.org/10.1007/978-3-030-83047-2
isbn_softcover978-3-030-83049-6
isbn_ebook978-3-030-83047-2
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology影響因子(影響力)




書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology影響因子(影響力)學(xué)科排名




書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology網(wǎng)絡(luò)公開度




書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology被引頻次




書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology被引頻次學(xué)科排名




書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology年度引用




書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology年度引用學(xué)科排名




書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology讀者反饋




書目名稱Machine and Deep Learning in Oncology, Medical Physics and Radiology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:18:49 | 只看該作者
地板
發(fā)表于 2025-3-22 06:42:40 | 只看該作者
5#
發(fā)表于 2025-3-22 09:21:11 | 只看該作者
6#
發(fā)表于 2025-3-22 13:36:06 | 只看該作者
7#
發(fā)表于 2025-3-22 17:24:55 | 只看該作者
Conventional Machine Learning Methodse principal component analysis and clustering (unsupervised), logistic regression, neural network, support vector machine, decision tree, Bayesian networks, and naive Bayes (supervised) in addition to reinforcement learning.
8#
發(fā)表于 2025-3-23 00:37:10 | 只看該作者
Performance Evaluationof that test. The purpose of this chapter is to review these techniques in so far as they apply to advances in Oncology, Medical Physics, and Radiology and to discuss additional evaluation techniques particularly suited for these tasks.
9#
發(fā)表于 2025-3-23 01:31:49 | 只看該作者
10#
發(fā)表于 2025-3-23 09:25:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广州市| 牙克石市| 板桥市| 西畴县| 海口市| 饶平县| 克拉玛依市| 腾冲县| 芒康县| 乌拉特后旗| 老河口市| 贵溪市| 祥云县| 大新县| 卢龙县| 渭南市| 确山县| 三江| 保靖县| 勃利县| 宁陕县| 道孚县| 石城县| 龙川县| 布尔津县| 云安县| 阿拉善右旗| 闵行区| 昭通市| 吉木萨尔县| 松原市| 蒙山县| 莲花县| 自贡市| 阿拉善左旗| 邵武市| 宝鸡市| 嘉荫县| 祁门县| 盱眙县| 淅川县|