找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Translation; 17th China Conferenc Jinsong Su,Rico Sennrich Conference proceedings 2021 Springer Nature Singapore Pte Ltd. 2021 arti

[復(fù)制鏈接]
樓主: 柳條筐
21#
發(fā)表于 2025-3-25 04:04:32 | 只看該作者
Semantic Perception-Oriented Low-Resource Neural Machine Translation,aining methods (BERT) uses attention mechanism based on Levenshtein distance (LD) to extract language features, which ignored syntax-related information. In this paper, we proposed a machine translation pre-training method with semantic perception which depend on the traditional position-based model
22#
發(fā)表于 2025-3-25 10:57:09 | 只看該作者
Semantic-Aware Deep Neural Attention Network for Machine Translation Detection,of data collected comes from machine-translated texts rather than native speakers or professional translators, severely reducing the benefit of data scale. Traditional machine translation detection methods generally require human-crafted feature engineering and are difficult to distinguish the fine-
23#
發(fā)表于 2025-3-25 11:57:50 | 只看該作者
Routing Based Context Selection for Document-Level Neural Machine Translation,encoding. Usually, the sentence-level representation is incorporated (via attention or gate mechanism) in these methods, which makes them straightforward but rough, and it is difficult to distinguish useful contextual information from noises. Furthermore, the longer the encoding length is, the more
24#
發(fā)表于 2025-3-25 19:17:46 | 只看該作者
Generating Diverse Back-Translations via Constraint Random Decoding,erformance of Neural Machine Translation (NMT), especially in low-resource scenarios. Previous researches show that diversity of the synthetic source sentences is essential for back-translation. However, the frequently used random methods such as sampling or noised beam search, although can output d
25#
發(fā)表于 2025-3-25 22:57:54 | 只看該作者
,ISTIC’s Neural Machine Translation System for CCMT’ 2021,chnical Information of China (ISTIC) for the 17th China Conference on Machine Translation (CCMT’ 2021). ISTIC participated in the following four machine translation (MT) evaluation tasks: MT task of Mongolian-to-Chinese daily expressions, MT task of Tibetan-to-Chinese government documents, MT task o
26#
發(fā)表于 2025-3-26 00:27:53 | 只看該作者
27#
發(fā)表于 2025-3-26 06:14:22 | 只看該作者
28#
發(fā)表于 2025-3-26 10:58:51 | 只看該作者
29#
發(fā)表于 2025-3-26 16:01:15 | 只看該作者
1865-0929 ober 2021.?.The 10 papers presented in this volume were carefully reviewed and selected from 25 submissions and focus on all aspects of machine translation, including preprocessing, neural machine translation models, hybrid model, evaluation method, and post-editing..978-981-16-7511-9978-981-16-7512-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
30#
發(fā)表于 2025-3-26 20:37:44 | 只看該作者
978-981-16-7511-9Springer Nature Singapore Pte Ltd. 2021
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双城市| 启东市| 宁化县| 邳州市| 黄浦区| 怀柔区| 金平| 株洲县| 和田市| 山东省| 襄汾县| 宾阳县| 龙门县| 泉州市| 杂多县| 台州市| 紫阳县| 汶川县| 广昌县| 临泽县| 高淳县| 墨脱县| 宣恩县| 长治市| 新化县| 天津市| 勃利县| 边坝县| 治县。| 南岸区| 元朗区| 桐柏县| 裕民县| 乳源| 西城区| 芮城县| 海伦市| 临江市| 莱州市| 莲花县| 婺源县|