找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning: ECML-95; 8th European Confere Nada Lavrac,Stefan Wrobel Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 199

[復(fù)制鏈接]
樓主: 珍珠無
21#
發(fā)表于 2025-3-25 08:34:21 | 只看該作者
The role of prototypicality in exemplar-based learning,perties approach, and a similarity-based approach, and suggests measures that implement the different approaches. The proposed measures are tested in a set of experiments. The results of the experiments show that prototypicality serves as a good storing filter in storage reduction algorithms; combin
22#
發(fā)表于 2025-3-25 13:45:00 | 只看該作者
Specialization of recursive predicates,sible to specialize or remove any of the clauses in a refutation of a negative example without excluding any positive examples. A previously proposed solution to this problem is to apply program transformation in order to obtain non-recursive target predicates from recursive ones. However, the appli
23#
發(fā)表于 2025-3-25 18:29:38 | 只看該作者
24#
發(fā)表于 2025-3-25 22:48:24 | 只看該作者
25#
發(fā)表于 2025-3-26 01:54:00 | 只看該作者
26#
發(fā)表于 2025-3-26 06:33:08 | 只看該作者
27#
發(fā)表于 2025-3-26 11:32:09 | 只看該作者
28#
發(fā)表于 2025-3-26 14:11:32 | 只看該作者
The power of decision tables,spaces possible, and usually they are easy to understand. Experimental results show that on artificial and real-world domains containing only discrete features, IDTM, an algorithm inducing decision tables, can sometimes outperform state-of-the-art algorithms such as C4.5. Surprisingly, performance i
29#
發(fā)表于 2025-3-26 19:24:44 | 只看該作者
Pruning multivariate decision trees by hyperplane merging,y contain binary tests questioning to what side of a hyperplane the example lies. Most of these algorithms use . mechanisms similar to those of traditional decision trees. Nearly unexplored remains the large domain of . methods, where a new decision test (derived from previous decision tests) replac
30#
發(fā)表于 2025-3-26 21:14:38 | 只看該作者
Multiple-Knowledge Representations in concept learning,nown that biases used in learning algorithms directly affect their performance as well as their comprehensibility. A critical problem is that, most of the time, the most “comprehensible” representations are not the best performer in terms of classification! In this paper, we argue that concept learn
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西丰县| 齐河县| 常山县| 白河县| 南漳县| 苍溪县| 铜山县| 博客| 会昌县| 扬州市| 噶尔县| 阿图什市| 北京市| 泾阳县| 安顺市| 蕲春县| 诏安县| 和平区| 册亨县| 衡阳县| 汝阳县| 肥城市| 都兰县| 于田县| 高州市| 昆山市| 沈丘县| 秦安县| 万州区| 溧水县| 陆河县| 景泰县| 江西省| 志丹县| 松滋市| 凤冈县| 晋宁县| 台江县| 阿坝| 柳河县| 巴东县|