找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning: ECML 2007; 18th European Confer Joost N. Kok,Jacek Koronacki,Andrzej Skowron Conference proceedings 2007 Springer-Verlag

[復制鏈接]
樓主: FERN
31#
發(fā)表于 2025-3-26 23:50:02 | 只看該作者
Learning Partially Observable Markov Models from First Passage Timesraphical models equivalent to Hidden Markov Models (HMMs). The model structure is built to support the First Passage Times (FPT) dynamics observed in the training sample. We argue that the FPT in POMMs are closely related to the model structure. Starting from a standard Markov chain, states are iter
32#
發(fā)表于 2025-3-27 02:17:40 | 只看該作者
Context Sensitive Paraphrasing with a Global Unsupervised Classifier templates that can replace other patterns or templates in . context, but we are attempting to make decisions for a . context. In this paper we develop a global classifier that takes a word . and its context, along with a candidate word ., and determines whether . can replace . in the given context
33#
發(fā)表于 2025-3-27 07:19:41 | 只看該作者
Dual Strategy Active Learningtion to multi-factor methods with learn-once-use-always model parameters. This paper proposes a dynamic approach, called DUAL, where the strategy selection parameters are adaptively updated based on estimated future residual error reduction after each actively sampled point. The objective of dual is
34#
發(fā)表于 2025-3-27 12:19:45 | 只看該作者
Decision Tree Instability and Active Learninge – they can produce drastically different hypotheses from training sets that differ just slightly. This instability undermines the objective of extracting knowledge from the trees. In this paper, we study the instability of the C4.5 decision tree learner in the context of active learning. We introd
35#
發(fā)表于 2025-3-27 16:39:17 | 只看該作者
Constraint Selection by Committee: An Ensemble Approach to Identifying Informative Constraints for Suently provided in the form of pairwise must-link and cannot-link constraints. While the incorporation of pairwise supervision has the potential to improve clustering accuracy, the composition and cardinality of the constraint sets can significantly impact upon the level of improvement. We demonstra
36#
發(fā)表于 2025-3-27 20:35:09 | 只看該作者
The Cost of Learning Directed Cuts setting in which the directed cut is fixed. However, even in this setting learning is not possible without in the worst case needing the labels for the whole vertex set. By considering the size of the minimum path cover as a fixed parameter, we derive positive learnability results with tight perfor
37#
發(fā)表于 2025-3-27 22:27:02 | 只看該作者
38#
發(fā)表于 2025-3-28 04:08:46 | 只看該作者
39#
發(fā)表于 2025-3-28 09:21:05 | 只看該作者
40#
發(fā)表于 2025-3-28 10:56:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 11:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桃园市| 宜宾市| 永兴县| 建水县| 彰化市| 申扎县| 六安市| 连山| 北海市| 黄梅县| 古蔺县| 同江市| 礼泉县| 南华县| 肇州县| 岫岩| 长顺县| 翼城县| 安吉县| 施甸县| 桦甸市| 鲁甸县| 陆丰市| 蒲城县| 仪陇县| 孝昌县| 淳化县| 德钦县| 康马县| 尚义县| 舒城县| 朝阳市| 沈丘县| 伊宁县| 康保县| 麻城市| 沂源县| 罗城| 太康县| 延吉市| 麻江县|