找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning, Optimization, and Data Science; 5th International Co Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca Conference proceedi

[復(fù)制鏈接]
查看: 16642|回復(fù): 66
樓主
發(fā)表于 2025-3-21 17:54:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning, Optimization, and Data Science
副標(biāo)題5th International Co
編輯Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca
視頻videohttp://file.papertrans.cn/621/620740/620740.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Machine Learning, Optimization, and Data Science; 5th International Co Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca Conference proceedi
描述.This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019. The 54 full papers presented were carefully reviewed and selected from 158 submissions. The papers cover topics in the field of machine learning, artificial intelligence, reinforcement learning, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; big data; data analytics; data mining; data science; deep reinforcement learning
版次1
doihttps://doi.org/10.1007/978-3-030-37599-7
isbn_softcover978-3-030-37598-0
isbn_ebook978-3-030-37599-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Machine Learning, Optimization, and Data Science影響因子(影響力)




書(shū)目名稱Machine Learning, Optimization, and Data Science影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning, Optimization, and Data Science網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science被引頻次




書(shū)目名稱Machine Learning, Optimization, and Data Science被引頻次學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science年度引用




書(shū)目名稱Machine Learning, Optimization, and Data Science年度引用學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science讀者反饋




書(shū)目名稱Machine Learning, Optimization, and Data Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:09:04 | 只看該作者
Quantitative and Ontology-Based Comparison of Explanations for Image Classification,ions, and in particular the semantic component is systematically overlooked. In this paper we introduce quantitative and ontology-based techniques and metrics in order to enrich and compare different explanations and XAI algorithms.
地板
發(fā)表于 2025-3-22 06:49:14 | 只看該作者
5#
發(fā)表于 2025-3-22 11:29:27 | 只看該作者
An Adaptive Parameter Free Particle Swarm Optimization Algorithm for the Permutation Flowshop Schede parameters are optimized together and simultaneously with the optimization of the objective function of the problem. This approach is used for the solution of the Permutation Flowshop Scheduling Problem. The algorithm is tested in 120 benchmark instances and is compared with a number of algorithms from the literature.
6#
發(fā)表于 2025-3-22 13:15:02 | 只看該作者
7#
發(fā)表于 2025-3-22 19:12:49 | 只看該作者
8#
發(fā)表于 2025-3-23 00:25:44 | 只看該作者
9#
發(fā)表于 2025-3-23 05:22:05 | 只看該作者
A Beam Search for the Longest Common Subsequence Problem Guided by a Novel Approximate Expected Lence. Results show in particular that our novel heuristic guidance leads frequently to significantly better solutions. New best solutions are obtained for a wide range of the existing benchmark instances.
10#
發(fā)表于 2025-3-23 06:14:09 | 只看該作者
Relationship Estimation Metrics for Binary SoC Data,mated relationships to give accuracy scores. The metrics . and . based on covariance and independence are demonstrated to be the most useful, whereas metrics based on the Hamming distance and geometric approaches are shown to be less useful for detecting the presence of relationships between SoC data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮滨县| 清新县| 山阳县| 鹰潭市| 庄浪县| 西和县| 宾阳县| 肇源县| 景洪市| 民权县| 砚山县| 班玛县| 临高县| 饶阳县| 平罗县| 靖边县| 五寨县| 微山县| 关岭| 佳木斯市| 泾川县| 乳源| 昆山市| 宜州市| 太康县| 修文县| 巴里| 焦作市| 昂仁县| 太仆寺旗| 龙川县| 高台县| 陕西省| 宜阳县| 登封市| 丰城市| 当阳市| 溧阳市| 扬中市| 新巴尔虎右旗| 梨树县|