找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning, Optimization, and Data Science; 6th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202

[復(fù)制鏈接]
樓主: CLIP
31#
發(fā)表于 2025-3-26 21:54:40 | 只看該作者
32#
發(fā)表于 2025-3-27 04:18:31 | 只看該作者
Automatic Curriculum Recommendation for Employees,or peer feedback. The system integrates content-based and interested-based recommendations across multiple data-streams and interaction modalities to arrive at superior recommendations to those based on just content or interests. The training assets span a wide variety of content formats such as blo
33#
發(fā)表于 2025-3-27 05:54:09 | 只看該作者
Target-Aware Prediction of Tool Usage in Sequential Repair Tasks, of tool usage would be helpful for various assistance scenarios, e.g. allowing a contextualized assistant to predict the next required tool in an unseen task. In this work, we examine the potential of this idea. We employ two prominent classes of sequence learning methods for modeling the tool usag
34#
發(fā)表于 2025-3-27 11:44:38 | 只看該作者
Safer Reinforcement Learning for Agents in Industrial Grid-Warehousing,larly challenging. Here, current state-of-the-art reinforcement learning algorithms struggle to learn optimal control policies safely. Loss of control follows, which could result in equipment breakages and even personal injuries..On the other hand, a model-based reinforcement learning algorithm aims
35#
發(fā)表于 2025-3-27 15:17:37 | 只看該作者
Coking Coal Railway Transportation Forecasting Using Ensembles of ElasticNet, LightGBM, and Faceboon two directions: export and domestic transportation. We built ensembles of ElasticNet, LightGBM, and Facebook Prophet models. The coal export transportation volumes are best predicted by an ensemble of ElasticNet and LightGBM models, giving the mean absolute percentage error at 10%. The best model
36#
發(fā)表于 2025-3-27 18:49:34 | 只看該作者
37#
發(fā)表于 2025-3-28 00:55:51 | 只看該作者
High-Dimensional Constrained Discrete Multi-objective Optimization Using Surrogates,nd many black-box constraints. The algorithm builds and maintains multiple surrogates to approximate each of the black-box objective and constraint functions. The surrogates are used to identify promising sample points for the function evaluations from a large number of trial solutions in the neighb
38#
發(fā)表于 2025-3-28 05:27:24 | 只看該作者
Exploring Gaps in DeepFool in Search of More Effective Adversarial Perturbations, original input. To find adversarial examples, some attack strategies rely on linear approximations of different properties of the models. This opens a number of questions related to the accuracy of such approximations. In this paper we focus on DeepFool, a state-of-the-art attack algorithm, which i
39#
發(fā)表于 2025-3-28 09:38:17 | 只看該作者
Lottery Ticket Hypothesis: Placing the k-orrect Bets,., the authors showed that pruning is a way of training, which we extend to show that pruning a well-trained network at initialization does not exhibit significant gains in accuracy. . motivates us to explore pruning after . epoch. We show that there exists a minimum value of . above which there is
40#
發(fā)表于 2025-3-28 14:03:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 16:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孟津县| 宜丰县| 甘泉县| 西昌市| 隆尧县| 五台县| 稷山县| 潞城市| 嘉荫县| 鲁山县| 海丰县| 巴林左旗| 资阳市| 伊宁市| 广南县| 武安市| 和龙市| 同仁县| 阿巴嘎旗| 井陉县| 唐河县| 阳原县| 阳春市| 东方市| 云和县| 葵青区| 九江市| 九台市| 大姚县| 桦甸市| 博客| 商都县| 泸西县| 色达县| 武平县| 交城县| 漳浦县| 望城县| 江都市| 大方县| 双江|