找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning, Optimization, and Data Science; 8th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202

[復(fù)制鏈接]
查看: 45008|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:06:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning, Optimization, and Data Science
副標(biāo)題8th International Co
編輯Giuseppe Nicosia,Varun Ojha,Renato Umeton
視頻videohttp://file.papertrans.cn/621/620735/620735.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Machine Learning, Optimization, and Data Science; 8th International Co Giuseppe Nicosia,Varun Ojha,Renato Umeton Conference proceedings 202
描述This two-volume set, LNCS 13810 and 13811,? constitutes the refereed proceedings of the 8th International Conference on Machine Learning, Optimization, and Data Science, LOD 2022, together with the papers of the Second Symposium on Artificial Intelligence and Neuroscience, ACAIN 2022.. The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
出版日期Conference proceedings 2023
關(guān)鍵詞adaptive control systems; anomaly-detection algorithms; artificial intelligence; automation; bayesian ne
版次1
doihttps://doi.org/10.1007/978-3-031-25891-6
isbn_softcover978-3-031-25890-9
isbn_ebook978-3-031-25891-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Machine Learning, Optimization, and Data Science影響因子(影響力)




書(shū)目名稱Machine Learning, Optimization, and Data Science影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning, Optimization, and Data Science網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science被引頻次




書(shū)目名稱Machine Learning, Optimization, and Data Science被引頻次學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science年度引用




書(shū)目名稱Machine Learning, Optimization, and Data Science年度引用學(xué)科排名




書(shū)目名稱Machine Learning, Optimization, and Data Science讀者反饋




書(shū)目名稱Machine Learning, Optimization, and Data Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:08:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:16:36 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/m/image/620735.jpg
地板
發(fā)表于 2025-3-22 07:26:14 | 只看該作者
5#
發(fā)表于 2025-3-22 10:13:26 | 只看該作者
,Pooling Graph Convolutional Networks for?Structural Performance Prediction,t is required for fitness computation can be prohibitively expensive. Employing surrogate models as performance predictors can reduce or remove the need for these costly evaluations. We present a deep graph learning approach that achieves state-of-the-art performance in multiple NAS performance pred
6#
發(fā)表于 2025-3-22 13:20:24 | 只看該作者
7#
發(fā)表于 2025-3-22 19:54:08 | 只看該作者
8#
發(fā)表于 2025-3-23 01:18:14 | 只看該作者
9#
發(fā)表于 2025-3-23 03:32:33 | 只看該作者
,Multi-omic Data Integration and?Feature Selection for?Survival-Based Patient Stratification via?Supforming high-quality multi-omic measurements have fuelled insights through machine learning. Previous studies have shown promise on using multiple omic layers to predict survival and stratify cancer patients. In this paper, we develop and report a Supervised Autoencoder (SAE) model for survival-base
10#
發(fā)表于 2025-3-23 08:13:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 00:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙陵县| 中江县| 静宁县| 荆州市| 小金县| 扬州市| 沧州市| 甘肃省| 资溪县| 贞丰县| 南汇区| 万源市| 扬州市| 锦屏县| 咸阳市| 常熟市| 夹江县| 广灵县| 宜春市| 东兴市| 河津市| 孟州市| 高陵县| 泽普县| 龙胜| 宝山区| 绥阳县| 黄大仙区| 荔浦县| 福贡县| 通海县| 米脂县| 桦南县| 青阳县| 福清市| 大田县| 阿图什市| 正定县| 敦煌市| 红原县| 曲阜市|