找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication; Proceedings of MDCWC E. S. Gopi Conference proce

[復制鏈接]
查看: 48064|回復: 53
樓主
發(fā)表于 2025-3-21 17:25:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication
副標題Proceedings of MDCWC
編輯E. S. Gopi
視頻videohttp://file.papertrans.cn/621/620723/620723.mp4
概述Presents research works in various fields of computational intelligence and machine learning.Discusses results of MDCWC 2020 held at National Institute of Technology Tiruchirappalli, India.Serves as a
叢書名稱Lecture Notes in Electrical Engineering
圖書封面Titlebook: Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication; Proceedings of MDCWC E. S. Gopi Conference proce
描述This book is a collection of best selected research papers presented at the Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020) held during October 22nd to 24th 2020, at the Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, India. The presented papers are grouped under the following topics (a) Machine Learning, Deep learning and Computational intelligence algorithms (b)Wireless communication systems and (c) Mobile data applications and are included in the book. The topics include? the latest research and results in the areas of network prediction, traffic classification, call detail record mining, mobile health care, mobile pattern recognition, natural language processing, automatic speech processing, mobility analysis, indoor localization, wireless sensor networks (WSN), energy minimization, routing, scheduling, resource allocation, multiple access, powercontrol, malware detection, cyber security, flooding attacks detection, mobile apps sniffing, MIMO detection, signal detection in MIMO-OFDM, modulation recognition, channel estimation, MIMO nonlinear equalizati
出版日期Conference proceedings 2021
關鍵詞Mobile Data Analysis; Mobility Analysis; Network Control and Security; Particle Swarm Optimization; Gene
版次1
doihttps://doi.org/10.1007/978-981-16-0289-4
isbn_softcover978-981-16-0291-7
isbn_ebook978-981-16-0289-4Series ISSN 1876-1100 Series E-ISSN 1876-1119
issn_series 1876-1100
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication影響因子(影響力)




書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication影響因子(影響力)學科排名




書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication網(wǎng)絡公開度




書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication網(wǎng)絡公開度學科排名




書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication被引頻次




書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication被引頻次學科排名




書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication年度引用




書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication年度引用學科排名




書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication讀者反饋




書目名稱Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:15:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:40:37 | 只看該作者
地板
發(fā)表于 2025-3-22 04:54:39 | 只看該作者
Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication978-981-16-0289-4Series ISSN 1876-1100 Series E-ISSN 1876-1119
5#
發(fā)表于 2025-3-22 09:51:18 | 只看該作者
6#
發(fā)表于 2025-3-22 13:09:37 | 只看該作者
7#
發(fā)表于 2025-3-22 19:24:06 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:02 | 只看該作者
LSTM Network for Hotspot Prediction in?Traffic Density of Cellular Network depends on numerous factors like time, location, number of mobile users connected and so on. It exhibits spatial and temporal relationships. However, only certain regions have higher data rates, known as hotspots. A hotspot is defined as a circular region with a particular centre and radius where t
9#
發(fā)表于 2025-3-23 02:55:16 | 只看該作者
Generative Adversarial Network and?Reinforcement Learning to Estimate Channel Coefficientsincreasing need to guarantee accuracy. There is little value in large data rates if the channel state information (CSI) is subject to frequent contamination. In the context of massive MIMO systems, error in decoding the signal is introduced mainly due to two key factors: (i) intercell interference (
10#
發(fā)表于 2025-3-23 05:40:07 | 只看該作者
Novel Method of Self-interference Cancelation in Full-Duplex Radios for 5G Wireless Technology Usingnique, same set of frequency channels is used for simultaneous uplink and downlink signal transmissions and hence is termed as full-duplex (FD) communications or full-duplex radios. However, a major shortcoming of this technique is the presence of self-interference (SI), which arises due to the pres
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
怀柔区| 屏东市| 沅江市| 阿巴嘎旗| 安国市| 嵊州市| 杂多县| 黔江区| 永城市| 磐安县| 金堂县| 泰兴市| 白银市| 蕲春县| 兴隆县| 金川县| 竹溪县| 云龙县| 绥芬河市| 横山县| 舟山市| 平顺县| 安乡县| 黑水县| 岑溪市| 林芝县| 永泰县| 新兴县| 阳谷县| 吴堡县| 盈江县| 宁河县| 阿鲁科尔沁旗| 南通市| 义乌市| 临安市| 赤壁市| 兖州市| 巴东县| 贡嘎县| 天镇县|