找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Radiation Oncology; Theory and Applicati Issam El Naqa,Ruijiang Li,Martin J. Murphy Book 20151st edition Springer Inter

[復(fù)制鏈接]
樓主: 我在爭斗志
41#
發(fā)表于 2025-3-28 16:12:52 | 只看該作者
Artificial Neural Networks to Emulate and Compensate Breathing Motion During Radiation Therapycan be trained to model individual breathing patterns. Neural networks have proven quite effective in this capacity. This chapter describes the nature of the motion-compensated treatment problem and the issues in using a neural network to handle it.
42#
發(fā)表于 2025-3-28 20:53:38 | 只看該作者
43#
發(fā)表于 2025-3-29 02:15:30 | 只看該作者
Informatics in Radiation Oncologyilable in digital formats, radiation treatment plan details, financial data, and multilevel multicenter databases, to name a few. Tools of various complexity for various goals are available. The following chapter aims to portray this domain and present a selection of available tools.
44#
發(fā)表于 2025-3-29 05:11:31 | 只看該作者
45#
發(fā)表于 2025-3-29 09:31:52 | 只看該作者
46#
發(fā)表于 2025-3-29 14:58:05 | 只看該作者
Computational Learning Theoryapacity of the algorithm selected, and under which conditions is successful learning possible or impossible. Practical methods for selecting proper model complexity are presented using techniques based on information theory and statistical resampling.
47#
發(fā)表于 2025-3-29 17:12:05 | 只看該作者
Image-Guided Radiotherapy with Machine Learning we will present and discuss automatic and semiautomatic methods for CT prostate segmentation in the IGRT workflow. In the last section, we will present our extension of some recently developed machine learning approaches to segment the prostate in MR images.
48#
發(fā)表于 2025-3-29 20:37:45 | 只看該作者
49#
發(fā)表于 2025-3-30 00:20:09 | 只看該作者
Treatment Planning Validatione technique was based on unsupervised machine learning, i.e., data clustering, and achieved over 90 % success rates in detecting outliers in over 1,000 treatment plans. Finally, future research directions in the clinical applications of machine learning for treatment planning validation will be briefly discussed.
50#
發(fā)表于 2025-3-30 07:41:21 | 只看該作者
Book 20151st editioniotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建湖县| 石棉县| 菏泽市| 永善县| 华池县| 桃园市| 滨州市| 龙门县| 黔江区| 武城县| 榆树市| 盐山县| 锡林郭勒盟| 麻阳| 巩义市| 巨鹿县| 青龙| 内乡县| 三亚市| 郸城县| 万宁市| 临潭县| 冕宁县| 文登市| 铅山县| 邯郸县| 普格县| 大足县| 黄大仙区| 高要市| 台北市| 集安市| 佛坪县| 会同县| 石屏县| 泰顺县| 绥宁县| 靖远县| 盘山县| 鱼台县| 柳河县|