找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medicine; Part Three Ton J. Cleophas,Aeilko H. Zwinderman Textbook 2013 Springer Science + Business Media Dordrecht 201

[復(fù)制鏈接]
查看: 33111|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:43:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning in Medicine
副標(biāo)題Part Three
編輯Ton J. Cleophas,Aeilko H. Zwinderman
視頻videohttp://file.papertrans.cn/621/620692/620692.mp4
概述Electronic health records of modern health facilities, are increasingly complex and systematic assessment of these records is virtually impossible without special computationally intensive methods.Cli
圖書封面Titlebook: Machine Learning in Medicine; Part Three Ton J. Cleophas,Aeilko H. Zwinderman Textbook 2013 Springer Science + Business Media Dordrecht 201
描述Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton‘s methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studie
出版日期Textbook 2013
版次1
doihttps://doi.org/10.1007/978-94-007-7869-6
isbn_softcover978-94-024-0260-5
isbn_ebook978-94-007-7869-6
copyrightSpringer Science + Business Media Dordrecht 2013
The information of publication is updating

書目名稱Machine Learning in Medicine影響因子(影響力)




書目名稱Machine Learning in Medicine影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Medicine網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Medicine網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Medicine被引頻次




書目名稱Machine Learning in Medicine被引頻次學(xué)科排名




書目名稱Machine Learning in Medicine年度引用




書目名稱Machine Learning in Medicine年度引用學(xué)科排名




書目名稱Machine Learning in Medicine讀者反饋




書目名稱Machine Learning in Medicine讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:38:33 | 只看該作者
ssible without special computationally intensive methods.CliMachine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal sc
板凳
發(fā)表于 2025-3-22 03:19:24 | 只看該作者
Random Effects,sidual, i.e. due to chance. If certain patients due to co-morbidity, co-medication, age or other factors will respond differently from others, then the spread in the data is caused not only by the residual effect but also by subgroup properties.
地板
發(fā)表于 2025-3-22 05:42:06 | 只看該作者
Complex Samples,However, this method is generally biased due to selection bias. Complex sample technology is better suitable for that purpose, because it produces largely unbiased population estimates. It is little used in clinical research.
5#
發(fā)表于 2025-3-22 09:06:46 | 只看該作者
6#
發(fā)表于 2025-3-22 16:07:06 | 只看該作者
7#
發(fā)表于 2025-3-22 19:05:07 | 只看該作者
Ton J. Cleophas,Aeilko H. Zwindermanction have been described in the quest for a solution to this problem. All surgical methods aim at reproducing the properties of the natural ligament as accurately and quickly as possible. The search for the optimal ACL replacement has led researchers in various directions, but the two major groups
8#
發(fā)表于 2025-3-22 21:36:35 | 只看該作者
Ton J. Cleophas,Aeilko H. Zwindermanre . = ., .?1,..., ?. (cf. Section 2.4). The effect of a ligand field of particular symmetry consists, in general, in splitting the free ion levels labeled by . into ligand field states. The decomposition is equivalent to the reduction .where ..(.) is subduced from representation .. of .(3) and wher
9#
發(fā)表于 2025-3-23 03:03:27 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
偃师市| 治多县| 芮城县| 岫岩| 山阳县| 梁山县| 邻水| 房山区| 翼城县| 福安市| 普定县| 上杭县| 隆林| 辛集市| 横山县| 五指山市| 浦县| 福建省| 太湖县| 玛曲县| 茶陵县| 揭西县| 乌拉特前旗| 特克斯县| 蒙山县| 峨眉山市| 呼伦贝尔市| 高邑县| 盱眙县| 修文县| 静宁县| 呼和浩特市| 利辛县| 荃湾区| 依安县| 五河县| 鄂尔多斯市| 永年县| 梁平县| 嘉义市| 阜新市|