找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 8th International Wo Qian Wang,Yinghuan Shi,Kenji Suzuki Conference proceedings 2017 Springer Internat

[復(fù)制鏈接]
樓主: 清楚明確
51#
發(fā)表于 2025-3-30 08:34:06 | 只看該作者
52#
發(fā)表于 2025-3-30 14:23:02 | 只看該作者
STAR: Spatio-Temporal Architecture for Super-Resolution in Low-Dose CT Perfusion,ction network, our approach can produce high-resolution spatio-temporal volumes. The experiment results demonstrate the capability of STAR to maintain the image quality and accuracy of cerebral hemodynamic parameters at only one-third of the original scanning time.
53#
發(fā)表于 2025-3-30 17:07:20 | 只看該作者
,Classification of Alzheimer’s Disease by Cascaded Convolutional Neural Networks Using PET Images, features. Then, a deep 3D CNNs is learned to ensemble the high-level features for final classification. The proposed method can automatically learn the generic features from PET imaging data for classification. No image segmentation and rigid registration are required in preprocessing the PET image
54#
發(fā)表于 2025-3-30 23:52:23 | 只看該作者
Finding Dense Supervoxel Correspondence of Cone-Beam Computed Tomography Images,nd serves as guidance for an optimal selection of tree structures. The proposed method has been tested on the label propagation of clinically-captured CBCT images. Experiments demonstrate the proposed method yields performance improvements over variants of both supervised and unsupervised random-for
55#
發(fā)表于 2025-3-31 01:48:03 | 只看該作者
56#
發(fā)表于 2025-3-31 07:45:29 | 只看該作者
Feature Learning and Fusion of Multimodality Neuroimaging and Genetic Data for Multi-status Dementicombination of modalities, via effective training using .. Specifically, in the first stage, we learn latent representations (i.e., high-level features) for each modality independently, so that the heterogeneity between modalities can be better addressed and then combined in the next stage. In the s
57#
發(fā)表于 2025-3-31 12:33:24 | 只看該作者
58#
發(fā)表于 2025-3-31 14:29:08 | 只看該作者
Efficient Groupwise Registration for Brain MRI by Fast Initialization,of deformation fields, as well as their respective simulated samples using different parameters for PCA. In the application stage, when given a new set of testing brain MR images, we can mix them with the augmented training samples. Then, for each testing image, we can find its closest sample in the
59#
發(fā)表于 2025-3-31 20:43:31 | 只看該作者
Sparse Multi-view Task-Centralized Learning for ASD Diagnosis,ntralized strategy for a highly efficient solution. The comprehensive experiments on the ABIDE database demonstrate that our proposed Sparse-MVTC method can significantly outperform the existing classification methods in ASD diagnosis.
60#
發(fā)表于 2025-3-31 22:26:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 23:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安吉县| 延吉市| 江安县| 通州市| 大姚县| 即墨市| 万盛区| 日土县| 得荣县| 沅陵县| 志丹县| 清丰县| 伊金霍洛旗| 奇台县| 疏勒县| 新干县| 青神县| 庄河市| 虞城县| 赣州市| 库尔勒市| 沭阳县| 安陆市| 黔南| 榆树市| 舞钢市| 灵台县| 青铜峡市| 安吉县| 抚远县| 宿松县| 义马市| 余江县| 迁安市| 嘉峪关市| 布拖县| 孙吴县| 钟山县| 崇州市| 滨州市| 开化县|