找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Finance; From Theory to Pract Matthew F. Dixon,Igor Halperin,Paul Bilokon Textbook 2020 Springer Nature Switzerland AG

[復制鏈接]
查看: 14937|回復: 50
樓主
發(fā)表于 2025-3-21 19:07:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning in Finance
副標題From Theory to Pract
編輯Matthew F. Dixon,Igor Halperin,Paul Bilokon
視頻videohttp://file.papertrans.cn/621/620671/620671.mp4
概述Introduces fundamental concepts in machine learning for canonical modeling and decision frameworks in finance.Presents a unified treatment of machine learning, financial econometrics and discrete time
圖書封面Titlebook: Machine Learning in Finance; From Theory to Pract Matthew F. Dixon,Igor Halperin,Paul Bilokon Textbook 2020 Springer Nature Switzerland AG
描述.This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance...Machine Learning in Finance: From Theory to Practice.?is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesianand frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. T
出版日期Textbook 2020
關鍵詞Machine Learning; Financial Mathematics; Financial Econometrics; Neural Networks; Bayesian Neural Networ
版次1
doihttps://doi.org/10.1007/978-3-030-41068-1
isbn_softcover978-3-030-41070-4
isbn_ebook978-3-030-41068-1
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Machine Learning in Finance影響因子(影響力)




書目名稱Machine Learning in Finance影響因子(影響力)學科排名




書目名稱Machine Learning in Finance網(wǎng)絡公開度




書目名稱Machine Learning in Finance網(wǎng)絡公開度學科排名




書目名稱Machine Learning in Finance被引頻次




書目名稱Machine Learning in Finance被引頻次學科排名




書目名稱Machine Learning in Finance年度引用




書目名稱Machine Learning in Finance年度引用學科排名




書目名稱Machine Learning in Finance讀者反饋




書目名稱Machine Learning in Finance讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:07:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:27:14 | 只看該作者
地板
發(fā)表于 2025-3-22 05:02:47 | 只看該作者
Textbook 2020al disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources a
5#
發(fā)表于 2025-3-22 09:40:48 | 只看該作者
6#
發(fā)表于 2025-3-22 15:18:51 | 只看該作者
7#
發(fā)表于 2025-3-22 18:48:04 | 只看該作者
8#
發(fā)表于 2025-3-22 21:15:55 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:37 | 只看該作者
10#
發(fā)表于 2025-3-23 05:44:51 | 只看該作者
Bayesian Regression and Gaussian Processesrning methods—specifically Gaussian process regression, an important class of Bayesian machine learning methods—and demonstrate their application to “surrogate” models of derivative prices. This chapter also provides a natural starting point from which to develop intuition for the role and functiona
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泰州市| 内乡县| 科技| 夏河县| 余姚市| 贵州省| 无为县| 穆棱市| 宁波市| 印江| 波密县| 土默特左旗| 山东省| 鱼台县| 安阳市| 锡林郭勒盟| 昭通市| 武陟县| 西青区| 巨鹿县| 恭城| 泰兴市| 德化县| 桦甸市| 洮南市| 西平县| 无锡市| 革吉县| 股票| 德保县| 大田县| 苗栗市| 安庆市| 简阳市| 垣曲县| 衡阳县| 横山县| 固阳县| 毕节市| 香港 | 隆林|