找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Networking; Third International éric Renault,Selma Boumerdassi,Paul Mühlethaler Conference proceedings 2021 Springer

[復(fù)制鏈接]
查看: 51596|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:34:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Networking
副標(biāo)題Third International
編輯éric Renault,Selma Boumerdassi,Paul Mühlethaler
視頻videohttp://file.papertrans.cn/621/620642/620642.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning for Networking; Third International  éric Renault,Selma Boumerdassi,Paul Mühlethaler Conference proceedings 2021 Springer
描述This book constitutes the thoroughly refereed proceedings of the Second International Conference on Machine Learning for Networking, MLN 2019, held in Paris, France, in December 2019. The 26 revised full papers included in the volume were carefully reviewed and selected from 75 submissions. They present and discuss new trends in deep and reinforcement learning, pattern recognition and classification for networks, machine learning for network slicing optimization, 5G system, user behavior prediction, multimedia, IoT, security and protection, optimization and new innovative machine learning methods, performance analysis of machine learning algorithms, experimental evaluations of machine learning, data mining in heterogeneous networks, distributed and decentralized machine learning algorithms, intelligent cloud-support communications, ressource allocation, energy-aware communications, software de ned networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks.
出版日期Conference proceedings 2021
關(guān)鍵詞machine learning approaches; machine learning algorithms; artificial intelligence; pattern recognition;
版次1
doihttps://doi.org/10.1007/978-3-030-70866-5
isbn_softcover978-3-030-70865-8
isbn_ebook978-3-030-70866-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Machine Learning for Networking影響因子(影響力)




書目名稱Machine Learning for Networking影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Networking網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Networking網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Networking被引頻次




書目名稱Machine Learning for Networking被引頻次學(xué)科排名




書目名稱Machine Learning for Networking年度引用




書目名稱Machine Learning for Networking年度引用學(xué)科排名




書目名稱Machine Learning for Networking讀者反饋




書目名稱Machine Learning for Networking讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:37:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:29:21 | 只看該作者
地板
發(fā)表于 2025-3-22 06:07:04 | 只看該作者
https://doi.org/10.1007/978-3-030-70866-5machine learning approaches; machine learning algorithms; artificial intelligence; pattern recognition;
5#
發(fā)表于 2025-3-22 11:55:07 | 只看該作者
Henry Clausen,Gudmund Grov,Marc Sabate,David Aspinall
6#
發(fā)表于 2025-3-22 13:15:16 | 只看該作者
7#
發(fā)表于 2025-3-22 20:59:49 | 只看該作者
Vasileios Kouliaridis,Nektaria Potha,Georgios Kambourakis
8#
發(fā)表于 2025-3-22 22:05:21 | 只看該作者
9#
發(fā)表于 2025-3-23 04:09:04 | 只看該作者
Better Anomaly Detection for Access Attacks Using Deep Bidirectional LSTMs,te to . while detecting effectively, which is significantly lower than the operational range of other methods. Furthermore, we reduce overall misclassification by more than . from the next best method.
10#
發(fā)表于 2025-3-23 07:24:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆安县| 息烽县| 晋中市| 新平| 静海县| 瑞昌市| 通州区| 钟山县| 达州市| 汤原县| 安义县| 富顺县| 防城港市| 静安区| 松桃| 金堂县| 霸州市| 开封市| 庆元县| 平罗县| 泸州市| 台中县| 彭山县| 开阳县| 铁岭市| 永昌县| 个旧市| 泸州市| 鹿泉市| 德庆县| 绥化市| 蒲江县| 台中县| 盖州市| 邛崃市| 沙田区| 华安县| 伊宁县| 长泰县| 中卫市| 朔州市|