找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Health Informatics; State-of-the-Art and Andreas Holzinger Book 2016 Springer International Publishing AG 2016 algorit

[復(fù)制鏈接]
查看: 32228|回復(fù): 69
樓主
發(fā)表于 2025-3-21 16:05:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Health Informatics
副標(biāo)題State-of-the-Art and
編輯Andreas Holzinger
視頻videohttp://file.papertrans.cn/621/620622/620622.mp4
概述Hot topics in machine learning for health informatics.State-of-the-art survey and output of the international HCI-KDD expert network.Discusses open problems and future challenges in order to stimulate
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning for Health Informatics; State-of-the-Art and Andreas Holzinger Book 2016 Springer International Publishing AG 2016 algorit
描述.Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization.. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence.. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field..
出版日期Book 2016
關(guān)鍵詞algorithms; artificial intelligence; big data; classification; data mining; data science; decision support
版次1
doihttps://doi.org/10.1007/978-3-319-50478-0
isbn_softcover978-3-319-50477-3
isbn_ebook978-3-319-50478-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2016
The information of publication is updating

書目名稱Machine Learning for Health Informatics影響因子(影響力)




書目名稱Machine Learning for Health Informatics影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Health Informatics網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Health Informatics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Health Informatics被引頻次




書目名稱Machine Learning for Health Informatics被引頻次學(xué)科排名




書目名稱Machine Learning for Health Informatics年度引用




書目名稱Machine Learning for Health Informatics年度引用學(xué)科排名




書目名稱Machine Learning for Health Informatics讀者反饋




書目名稱Machine Learning for Health Informatics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:19:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:46:37 | 只看該作者
https://doi.org/10.1007/978-3-319-50478-0algorithms; artificial intelligence; big data; classification; data mining; data science; decision support
地板
發(fā)表于 2025-3-22 04:40:52 | 只看該作者
Andreas HolzingerHot topics in machine learning for health informatics.State-of-the-art survey and output of the international HCI-KDD expert network.Discusses open problems and future challenges in order to stimulate
5#
發(fā)表于 2025-3-22 11:17:01 | 只看該作者
6#
發(fā)表于 2025-3-22 14:32:12 | 只看該作者
0302-9743 es open problems and future challenges in order to stimulate.Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutic
7#
發(fā)表于 2025-3-22 17:10:21 | 只看該作者
Book 2016roviding future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization.. Tackling complex chal
8#
發(fā)表于 2025-3-22 22:56:12 | 只看該作者
Grammars for Discrete Dynamics,ntinuous methods cannot be applied or are computationally prohibitive. Moreover, the computational universality of MP grammars of a very simple type is shown, and one of the most relevant cases of MP biological models is shortly presented.
9#
發(fā)表于 2025-3-23 03:18:44 | 只看該作者
10#
發(fā)表于 2025-3-23 07:31:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善左旗| 丰都县| 山丹县| 大安市| 揭东县| 彩票| 黔西县| 启东市| 当阳市| 方城县| 武安市| 永仁县| 侯马市| 旺苍县| 霍邱县| 天祝| 日喀则市| 樟树市| 甘德县| 隆安县| 夹江县| 伊宁市| 都昌县| 龙里县| 瓮安县| 丹棱县| 都兰县| 建湖县| 甘孜县| 巩义市| 平武县| 伊宁县| 蓬溪县| 汉川市| 哈尔滨市| 武鸣县| 怀集县| 天门市| 郓城县| 松原市| 凤翔县|