找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Ecology and Sustainable Natural Resource Management; Grant Humphries,Dawn R. Magness,Falk Huettmann Book 2018 Springe

[復(fù)制鏈接]
樓主: indulge
11#
發(fā)表于 2025-3-23 12:48:45 | 只看該作者
Landscape Applications of Machine Learning: Comparing Random Forests and Logistic Regression in Multe conifer forest. Visual inspection of the predicted occurrence probability maps shows that random forest produces predictions that are more discriminatory, with higher range of predicted probability and higher spatial heterogeneity than logistic regression. The logistic regression model has an AUC
12#
發(fā)表于 2025-3-23 17:24:09 | 只看該作者
13#
發(fā)表于 2025-3-23 18:21:11 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:26 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:40 | 只看該作者
Breaking Away from ‘Traditional’ Uses of Machine Learning: A Case Study Linking Sooty Shearwaters (, correlation of r?>?0.8 for SOI values from 0 to 14?months after peak chick size. A combination of parameters and regions best explain the variation in the SOI data, however the most important variables are those that represent general turbulence in the sub-Antarctic water and Polar front regions (i
16#
發(fā)表于 2025-3-24 08:19:50 | 只看該作者
17#
發(fā)表于 2025-3-24 13:48:04 | 只看該作者
Machine Learning Techniques for Quantifying Geographic Variation in Leach’s Storm-Petrel (,) Vocaliz handling. We found that random forests from the h2o and ‘randomForest’ packages in R performed best with regards to accuracy, ‘randomForest’ and ‘gbm’ performing best with regards to speed, and ‘tensor forest’ and ‘h2o’ implementations performing best with regards to memory. Furthermore, we were ab
18#
發(fā)表于 2025-3-24 14:58:09 | 只看該作者
19#
發(fā)表于 2025-3-24 19:42:30 | 只看該作者
20#
發(fā)表于 2025-3-25 02:33:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀集县| 寻乌县| 临泽县| 当雄县| 沙雅县| 西宁市| 汨罗市| 云和县| 庄浪县| 冀州市| 深水埗区| 安多县| 宜春市| 吉木萨尔县| 江陵县| 阿城市| 南平市| 思茅市| 泽州县| 泾源县| 阳泉市| 汝南县| 嘉黎县| 阿巴嘎旗| 随州市| 汪清县| 孝义市| 乐陵市| 定州市| 新巴尔虎左旗| 海林市| 伊川县| 洪湖市| 宁海县| 靖安县| 乾安县| 奉新县| 常州市| 芦山县| 瓮安县| 奉节县|