找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Ecology and Sustainable Natural Resource Management; Grant Humphries,Dawn R. Magness,Falk Huettmann Book 2018 Springe

[復(fù)制鏈接]
樓主: indulge
11#
發(fā)表于 2025-3-23 12:48:45 | 只看該作者
Landscape Applications of Machine Learning: Comparing Random Forests and Logistic Regression in Multe conifer forest. Visual inspection of the predicted occurrence probability maps shows that random forest produces predictions that are more discriminatory, with higher range of predicted probability and higher spatial heterogeneity than logistic regression. The logistic regression model has an AUC
12#
發(fā)表于 2025-3-23 17:24:09 | 只看該作者
13#
發(fā)表于 2025-3-23 18:21:11 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:26 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:40 | 只看該作者
Breaking Away from ‘Traditional’ Uses of Machine Learning: A Case Study Linking Sooty Shearwaters (, correlation of r?>?0.8 for SOI values from 0 to 14?months after peak chick size. A combination of parameters and regions best explain the variation in the SOI data, however the most important variables are those that represent general turbulence in the sub-Antarctic water and Polar front regions (i
16#
發(fā)表于 2025-3-24 08:19:50 | 只看該作者
17#
發(fā)表于 2025-3-24 13:48:04 | 只看該作者
Machine Learning Techniques for Quantifying Geographic Variation in Leach’s Storm-Petrel (,) Vocaliz handling. We found that random forests from the h2o and ‘randomForest’ packages in R performed best with regards to accuracy, ‘randomForest’ and ‘gbm’ performing best with regards to speed, and ‘tensor forest’ and ‘h2o’ implementations performing best with regards to memory. Furthermore, we were ab
18#
發(fā)表于 2025-3-24 14:58:09 | 只看該作者
19#
發(fā)表于 2025-3-24 19:42:30 | 只看該作者
20#
發(fā)表于 2025-3-25 02:33:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭山县| 南川市| 彭水| 军事| 新疆| 社旗县| 德州市| 广丰县| 华安县| 个旧市| 临沭县| 凤翔县| 海林市| 白水县| 滨州市| 石屏县| 三原县| 海原县| 孟津县| 黎平县| 永年县| 桐城市| 湘潭县| 读书| 古田县| 邻水| 宝清县| 永安市| 建德市| 东兰县| 琼海市| 那曲县| 囊谦县| 浙江省| 滦南县| 巫山县| 当雄县| 新余市| 金沙县| 宣威市| 潍坊市|