找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Earth Sciences; Using Python to Solv Maurizio Petrelli Textbook 2023 The Editor(s) (if applicable) and The Author(s),

[復制鏈接]
樓主: NO610
21#
發(fā)表于 2025-3-25 07:21:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:12:05 | 只看該作者
Textbook 2023ata, well-log data facies classification, and machine learning regression in petrology. Also, the book introduces the basics of parallel computing and how to scale ML models in the cloud. The book is devoted to Earth Scientists, at any level, from students to academics and professionals..
23#
發(fā)表于 2025-3-25 13:34:21 | 只看該作者
24#
發(fā)表于 2025-3-25 17:06:17 | 只看該作者
Machine Learning for Earth Sciences978-3-031-35114-3Series ISSN 2510-1307 Series E-ISSN 2510-1315
25#
發(fā)表于 2025-3-25 21:20:07 | 只看該作者
26#
發(fā)表于 2025-3-26 03:02:34 | 只看該作者
27#
發(fā)表于 2025-3-26 04:47:15 | 只看該作者
https://doi.org/10.1007/978-3-031-35114-3Deep Learning; Application of Machine Learning; Python Tools and Techniques; Tree-Based Models; ML Tools
28#
發(fā)表于 2025-3-26 11:52:43 | 只看該作者
Clustering of Multi-Spectral Dataions. It describes how to import, pre-process, describe, and analyze multi-spectral data that can be downloaded from access points such as USGS Earth Explorer, the Copernicus Open Access Hub, and Theia.
29#
發(fā)表于 2025-3-26 12:54:16 | 只看該作者
Introduction to Machine LearningThis chapter introduces the basics of machine learning to geologists. Toward this end, it first provides fundamental definitions and introduces common terminology. It then discusses the learning process and defines the different types of learning paradigms (i.e., supervised, unsupervised, and semisupervised).
30#
發(fā)表于 2025-3-26 18:30:20 | 只看該作者
Setting Up Your Python Environments for Machine LearningThis chapter details how to prepare a Python environment to start working with Machine Learning in Earth Sciences. First, it shows how to set up a local Python environment, and then how to create a remote Linux instance. Finally, it explains how to start working with cloud-based machine learning environments.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 19:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岫岩| 平罗县| 灵山县| 英吉沙县| 沁水县| 台前县| 邯郸市| 蕲春县| 康平县| 吴旗县| 孝义市| 井冈山市| 佛坪县| 平陆县| 金乡县| 临沧市| 远安县| 称多县| 集贤县| 开阳县| 安庆市| 闽侯县| 广州市| 桦南县| 常山县| 鄂托克前旗| 广水市| 遵义市| 高陵县| 互助| 达拉特旗| 田阳县| 合阳县| 林西县| 运城市| 达孜县| 开远市| 张家口市| 莱州市| 明溪县| 昭苏县|