找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Cybersecurity; Innovative Deep Lear Marwan Omar Book 2022 The Author(s), under exclusive license to Springer Nature Sw

[復(fù)制鏈接]
查看: 48435|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:29:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Cybersecurity
副標(biāo)題Innovative Deep Lear
編輯Marwan Omar
視頻videohttp://file.papertrans.cn/621/620609/620609.mp4
概述Learn emerging machine learning techniques to manage data and defend your information system networks using the Python ecosystem.Apply Deep Learning to malware anomaly detection, intrusion detection s
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Machine Learning for Cybersecurity; Innovative Deep Lear Marwan Omar Book 2022 The Author(s), under exclusive license to Springer Nature Sw
描述This SpringerBrief presents the underlying principles of machine learning and how to deploy various deep learning tools and techniques to tackle and solve certain challenges facing the cybersecurity industry..By implementing innovative deep learning solutions, cybersecurity researchers, students and practitioners can analyze patterns and learn how to prevent cyber-attacks and respond to changing malware behavior.?.The knowledge and tools introduced in this brief can also assist cybersecurity teams to become more proactive in preventing threats and responding to active attacks in real time. It can reduce the amount of time spent on routine?tasks and enable organizations to use their resources more strategically. In short, the knowledge and techniques provided in this brief can help make cybersecurity simpler, more proactive, less expensive and far more effective.Advanced-level students in computer science studying machine learning with a cybersecurity focus will find this SpringerBrief useful as a study guide. Researchers and cybersecurity professionals focusing on the application?of machine learning tools and techniques to the cybersecurity domain will also want to purchase this Sp
出版日期Book 2022
關(guān)鍵詞machine learning; Cybersecurity; deep learning; malware detection; anomaly detection; Cyber attacks; decis
版次1
doihttps://doi.org/10.1007/978-3-031-15893-3
isbn_softcover978-3-031-15892-6
isbn_ebook978-3-031-15893-3Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Machine Learning for Cybersecurity影響因子(影響力)




書目名稱Machine Learning for Cybersecurity影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Cybersecurity網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Cybersecurity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Cybersecurity被引頻次




書目名稱Machine Learning for Cybersecurity被引頻次學(xué)科排名




書目名稱Machine Learning for Cybersecurity年度引用




書目名稱Machine Learning for Cybersecurity年度引用學(xué)科排名




書目名稱Machine Learning for Cybersecurity讀者反饋




書目名稱Machine Learning for Cybersecurity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:23 | 只看該作者
New Approach to Malware Detection Using Optimized Convolutional Neural Network, and effectively detect malware with high precision. This paper is different than most other papers in the literature in that it uses an expert data science approach by developing a convolutional neural network from scratch to establish a baseline of the performance model first, explores and impleme
板凳
發(fā)表于 2025-3-22 01:28:31 | 只看該作者
地板
發(fā)表于 2025-3-22 08:11:01 | 只看該作者
Book 2022olve certain challenges facing the cybersecurity industry..By implementing innovative deep learning solutions, cybersecurity researchers, students and practitioners can analyze patterns and learn how to prevent cyber-attacks and respond to changing malware behavior.?.The knowledge and tools introduc
5#
發(fā)表于 2025-3-22 11:18:20 | 只看該作者
Malware Anomaly Detection Using Local Outlier Factor Technique,ectiveness of our technique on real-world datasets. This is an efficient technique for malware detection as the model trained for this purpose is based on unsupervised learning. The model trains on the anomalies, that is, the unusual behavior in a process, making it significantly effective.
6#
發(fā)表于 2025-3-22 15:33:54 | 只看該作者
Application of Machine Learning (ML) to Address Cybersecurity Threats,various problem domains in cybersecurity. To achieve this objective, a rapid evidence assessment (REA) of existing scholarly literature on the subject matter is adopted. The aim is to present a snapshot of the various ways ML is being applied to help address cybersecurity threat challenges.
7#
發(fā)表于 2025-3-22 19:22:14 | 只看該作者
8#
發(fā)表于 2025-3-23 00:00:35 | 只看該作者
Application of Machine Learning (ML) to Address Cybersecurity Threats,s has prompted the use of machine learning (hereafter, ML) to help address the problem. But as organizations increasingly use intelligent cybersecurity techniques, the overall efficacy and benefit analysis of these ML-based digital security systems remain a subject of increasing scholarly inquiry. T
9#
發(fā)表于 2025-3-23 05:12:29 | 只看該作者
10#
發(fā)表于 2025-3-23 08:50:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铁岭市| 长乐市| 湾仔区| 子长县| 农安县| 偏关县| 江口县| 会泽县| 富阳市| 积石山| 赤壁市| 西充县| 六安市| 盐山县| 资兴市| 海原县| 厦门市| 富民县| 鞍山市| 建始县| 唐山市| 漯河市| 昂仁县| 秦皇岛市| 陇川县| 邯郸市| 庐江县| 蒲城县| 广宗县| 绥棱县| 周宁县| 新密市| 阳江市| 通江县| 洱源县| 渭南市| 昭觉县| 拉萨市| 逊克县| 新建县| 临桂县|