找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Cyber-Physical Systems; Selected papers from Oliver Niggemann,Jürgen Beyerer,Christian Kühnert Conference proceedings‘

[復(fù)制鏈接]
查看: 25870|回復(fù): 47
樓主
發(fā)表于 2025-3-21 16:11:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Cyber-Physical Systems
副標(biāo)題Selected papers from
編輯Oliver Niggemann,Jürgen Beyerer,Christian Kühnert
視頻videohttp://file.papertrans.cn/621/620608/620608.mp4
概述Includes the full proceedings of the 2023 ML4CPS – Machine Learning for Cyber-Physical Systems Conference.Presents recent and new advances in automated machine learning methods.Combines machine learni
叢書名稱Technologien für die intelligente Automation
圖書封面Titlebook: Machine Learning for Cyber-Physical Systems; Selected papers from Oliver Niggemann,Jürgen Beyerer,Christian Kühnert Conference proceedings‘
描述.This open access proceedings presents new approaches to Machine Learning for Cyber-Physical Systems, experiences and visions. It?contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber-Physical Systems, which was held in Hamburg (Germany), March 29th to 31st, 2023.?.Cyber-physical systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments..This is an open access book..
出版日期Conference proceedings‘‘‘‘‘‘‘‘ 2024
關(guān)鍵詞Cyber-physical systems; Neural networks; Computer Science; Network architecture; Automatic validation; Ma
版次1
doihttps://doi.org/10.1007/978-3-031-47062-2
isbn_softcover978-3-031-47061-5
isbn_ebook978-3-031-47062-2Series ISSN 2522-8579 Series E-ISSN 2522-8587
issn_series 2522-8579
copyrightThe Editor(s) (if applicable) and The Author(s) 2024
The information of publication is updating

書目名稱Machine Learning for Cyber-Physical Systems影響因子(影響力)




書目名稱Machine Learning for Cyber-Physical Systems影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Cyber-Physical Systems網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Cyber-Physical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Cyber-Physical Systems被引頻次




書目名稱Machine Learning for Cyber-Physical Systems被引頻次學(xué)科排名




書目名稱Machine Learning for Cyber-Physical Systems年度引用




書目名稱Machine Learning for Cyber-Physical Systems年度引用學(xué)科排名




書目名稱Machine Learning for Cyber-Physical Systems讀者反饋




書目名稱Machine Learning for Cyber-Physical Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:46:55 | 只看該作者
地板
發(fā)表于 2025-3-22 04:55:11 | 只看該作者
,Using ML-Based Models in?Simulation of?CPPSs: A Case Study of?Smart Meter Production, costly process. This paper describes an approach which uses: 1) recorded data to automatically learn timed automata models of system components; and 2) manual logic based on prior knowledge that extends and enables the utilization of the learned models for simulation. Experiments in a smart meter p
5#
發(fā)表于 2025-3-22 09:35:37 | 只看該作者
6#
發(fā)表于 2025-3-22 14:01:04 | 只看該作者
,Development of?a?Robotic Bin Picking Approach Based on Reinforcement Learning,r decades, there is still a gap between research and industrial application. The presented work intends to improve the utilization of bin picking for the industrial manufacturing of electrotechnical components. In this context, the development process of a system approach based on machine learning i
7#
發(fā)表于 2025-3-22 17:05:11 | 只看該作者
,Control Reconfiguration of?CPS via?Online Identification Using Sparse Regression (SINDYc),ation of the system are crucial. This paper proposes a method for controlling reconfiguration by identifying faults in cyber-physical systems online. The approach utilizes sparse regression (SINDYc) to identify the system dynamics, including faults, and adjusts the control law accordingly by leverag
8#
發(fā)表于 2025-3-23 00:25:45 | 只看該作者
9#
發(fā)表于 2025-3-23 04:39:51 | 只看該作者
,Domain Knowledge Injection Guidance for?Predictive Maintenance, Unique challenges that often occur in real-time manufacturing environments require the use of domain knowledge from different experts. However, there is hardly any guidance that suggests data scientists how to inject knowledge from predictive maintenance use cases in machine learning models. This p
10#
發(fā)表于 2025-3-23 07:24:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石河子市| 清新县| 韩城市| 故城县| 邵武市| 荔波县| 怀集县| 张家港市| 阿图什市| 渝中区| 霍林郭勒市| 南充市| 中方县| 沧源| 浦北县| 广丰县| 海林市| 台中市| 富源县| 抚顺县| 尼玛县| 永康市| 长武县| 奉化市| 安龙县| 中超| 汉寿县| 卢龙县| 大埔县| 灵川县| 新营市| 安远县| 宾川县| 洛南县| 永仁县| 马尔康县| 武川县| 霍邱县| 镇巴县| 双峰县| 含山县|