找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Authorship Attribution and Cyber Forensics; Farkhund Iqbal,Mourad Debbabi,Benjamin C. M. Fung Book 2020 The Editor(s)

[復(fù)制鏈接]
查看: 35851|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:08:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics
編輯Farkhund Iqbal,Mourad Debbabi,Benjamin C. M. Fung
視頻videohttp://file.papertrans.cn/621/620587/620587.mp4
概述Unified approach to investigate digital crimes and identify suspects together with their collaborators and facilitators.Customized data mining and machine learning methods for investigating cyber-atta
叢書(shū)名稱International Series on Computer, Entertainment and Media Technology
圖書(shū)封面Titlebook: Machine Learning for Authorship Attribution and Cyber Forensics;  Farkhund Iqbal,Mourad Debbabi,Benjamin C. M. Fung Book 2020 The Editor(s)
描述.The book first explores the cybersecurity’s landscape and the inherent susceptibility of online communication system such as e-mail, chat conversation and social media in cybercrimes. Common sources and resources of digital crimes, their causes and effects together with the emerging threats for society are illustrated in this book. This book not only explores the growing needs of cybersecurity and digital forensics but also investigates relevant technologies and methods to meet the said needs. Knowledge discovery, machine learning and data analytics are explored for collecting cyber-intelligence and forensics evidence on cybercrimes..Online communication documents, which are the main source of cybercrimes are investigated from two perspectives: the crime and the criminal. AI and machine learning methods are applied to detect illegal and criminal activities such as bot distribution, drug trafficking and child pornography. Authorship analysis is applied to identify the potentialsuspects and their social linguistics characteristics. Deep learning together with frequent pattern mining and link mining techniques are applied to trace the potential collaborators of the identified crimina
出版日期Book 2020
關(guān)鍵詞Cybercrime; Forensic investigation; Cyber forensics; Crime investigation; Data mining; Classification; Clu
版次1
doihttps://doi.org/10.1007/978-3-030-61675-5
isbn_softcover978-3-030-61677-9
isbn_ebook978-3-030-61675-5Series ISSN 2364-947X Series E-ISSN 2364-9488
issn_series 2364-947X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics影響因子(影響力)




書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics被引頻次




書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics被引頻次學(xué)科排名




書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics年度引用




書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics年度引用學(xué)科排名




書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics讀者反饋




書(shū)目名稱Machine Learning for Authorship Attribution and Cyber Forensics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:55:40 | 只看該作者
Analyzing Network Level Information,sage, including header and network information; and how to forensically analyze the dataset to attain the information that would be necessary to trace back to the source of the crime. The header content and network information are usually the immediate sources for collecting preliminary information
地板
發(fā)表于 2025-3-22 05:13:28 | 只看該作者
5#
發(fā)表于 2025-3-22 10:10:24 | 只看該作者
6#
發(fā)表于 2025-3-22 15:40:27 | 只看該作者
Authorship Characterization,. Unlike the problems of authorship attribution, where the potential suspects and their training samples are accessible for investigation, no candidate list of suspects is available in authorship characterization. Instead, the investigator is given one or more anonymous documents and is asked to ide
7#
發(fā)表于 2025-3-22 17:41:00 | 只看該作者
8#
發(fā)表于 2025-3-23 00:45:49 | 只看該作者
Criminal Information Mining,g criminal information from the textual content of suspicious online messages. Archives of online messages, including chat logs, e-mails, web forums, and blogs, often contain an enormous amount of forensically relevant information about potential suspects and their illegitimate activities. Such info
9#
發(fā)表于 2025-3-23 04:18:33 | 只看該作者
Artificial Intelligence And Digital Forensics,arge or complex tasks that normally require human intelligence; furthermore, it comprises a combination of technologies that can obtain insights and patterns from a massive amount of data which is a crucial element of forensic analysis. This chapter focuses on AI and its subfields: machine learning
10#
發(fā)表于 2025-3-23 08:42:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北安市| 安溪县| 昌乐县| 即墨市| 敦煌市| 黔东| 酉阳| 东山县| 高阳县| 五大连池市| 凯里市| 盐源县| 集贤县| 昌都县| 海林市| 汉沽区| 来凤县| 丽水市| 盐源县| 建宁县| 独山县| 临泽县| 江山市| 蕲春县| 祥云县| 山阴县| 紫金县| 鄯善县| 克山县| 增城市| 五指山市| 公主岭市| 普宁市| 米泉市| 尉犁县| 麟游县| 张掖市| 乌恰县| 武功县| 丁青县| 清镇市|