找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Adaptive Many-Core Machines - A Practical Approach; Noel Lopes,Bernardete Ribeiro Book 2015 Springer International Pu

[復(fù)制鏈接]
樓主: 他剪短
21#
發(fā)表于 2025-3-25 06:56:45 | 只看該作者
22#
發(fā)表于 2025-3-25 10:21:15 | 只看該作者
Non-Negative Matrix Factorization (NMF) spaces, effectively reducing the number of features while retaining the basis information necessary to reconstruct the original data. Basically, it decomposes a matrix, containing only non-negative coefficients, into the product of two other non-negative matrices with reduced ranks. Since negative
23#
發(fā)表于 2025-3-25 12:31:39 | 只看該作者
Deep Belief Networks (DBNs)t signal data. New insights of the visual cortex and studies in the relations between the connectivity found in the brain and mechanisms for mind inference have enlightened the development of deep neural networks. In this chapter the motivation for the design of these architectures points out toward
24#
發(fā)表于 2025-3-25 16:03:10 | 只看該作者
Adaptive Many-Core Machinesity in mind. The rationale is to increase their practical applicability to largescale ML problems. The common underlying thread has been the recent progress in usability, cost effectiveness and diversity of parallel computing platforms, specifically, Graphics Processing Units (GPUs), tailored for a
25#
發(fā)表于 2025-3-25 21:48:26 | 只看該作者
Incremental Hypersphere Classifier (IHC)n terms of multi-class support, complexity, scalability and interpretability. The Incremental Hypersphere Classifier (IHC) is tested in well-known benchmarks yielding good classification performance results. Additionally, it can be used as an instance selection method since it preserves class boundary samples.
26#
發(fā)表于 2025-3-26 02:11:20 | 只看該作者
27#
發(fā)表于 2025-3-26 05:03:48 | 只看該作者
Motivation and Preliminariesons that need to be consistent, well-posed and robust. In the final of the chapter an approach to combine supervised and unsupervised models is given which can impart in better adaptive models in many applications.
28#
發(fā)表于 2025-3-26 10:53:03 | 只看該作者
Support Vector Machines (SVMs)derstanding of specific aspects related to the implementation of basic SVM machines in a many-core perspective. Further developments can easily be extended to other SVM variants launching one step further the potential for big data adaptive machines.
29#
發(fā)表于 2025-3-26 13:38:22 | 只看該作者
Non-Negative Matrix Factorization (NMF)nce cost function. In addition, a new semi-supervised approach that reduces the computational cost while improving the accuracy of NMF-based models is also presented. Finally, we present results for well-known face recognition benchmarks that demonstrate the advantages of both the proposed method and the GPU implementations.
30#
發(fā)表于 2025-3-26 17:04:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 15:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安溪县| 红原县| 舟山市| 新乡县| 五家渠市| 高淳县| 襄垣县| 襄城县| 望都县| 南华县| 龙泉市| 浑源县| 炎陵县| 柏乡县| 梧州市| 寿阳县| 益阳市| 临夏市| 康平县| 永登县| 巴彦县| 邵阳市| 陆川县| 晴隆县| 虎林市| 井研县| 克什克腾旗| 忻城县| 镇巴县| 东丰县| 闽清县| 浏阳市| 贡觉县| 岳普湖县| 将乐县| 集贤县| 宿州市| 靖西县| 淮阳县| 石渠县| 皋兰县|