找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Extraction; 4th IFIP TC 5, TC 12 Andreas Holzinger,Peter Kieseberg,Edgar Weippl Conference proceedings 2020

[復(fù)制鏈接]
樓主: ATE
51#
發(fā)表于 2025-3-30 11:31:06 | 只看該作者
eXDiL: A Tool for Classifying and eXplaining Hospital Discharge Letters,commonly classified over the standard taxonomy made by the World Health Organization, that is the International Statistical Classification of Diseases and Related Health Problems (ICD-10). Particularly, classifying DiLs on the right code is crucial to allow hospitals to be refunded by Public Adminis
52#
發(fā)表于 2025-3-30 15:44:20 | 只看該作者
53#
發(fā)表于 2025-3-30 19:43:16 | 只看該作者
54#
發(fā)表于 2025-3-31 00:32:11 | 只看該作者
The European Legal Framework for Medical AI,ability implications of AI, the Internet of Things (IoT) and robotics. In its White Paper, the Commission highlighted the “European Approach” to AI, stressing that “it is vital that European AI is grounded in our values and fundamental rights such as human dignity and privacy protection”. It also an
55#
發(fā)表于 2025-3-31 01:09:51 | 只看該作者
56#
發(fā)表于 2025-3-31 06:02:57 | 只看該作者
57#
發(fā)表于 2025-3-31 10:20:13 | 只看該作者
Non-local Second-Order Attention Network for Single Image Super Resolution,nvolution neural network recently are introduced into super resolution to tackle this problem and further bringing forward progress in this field. Although state-of-the-art studies have obtain excellent performance by designing the structure and the way of connection in the convolution neural networ
58#
發(fā)表于 2025-3-31 13:57:48 | 只看該作者
ML-ModelExplorer: An Explorative Model-Agnostic Approach to Evaluate and Compare Multi-class Classieters, or feature subsets. The common approach of selecting the best model using one overall metric does not necessarily find the most suitable model for a given application, since it ignores the different effects of class confusions. Expert knowledge is key to evaluate, understand and compare model
59#
發(fā)表于 2025-3-31 20:48:33 | 只看該作者
Subverting Network Intrusion Detection: Crafting Adversarial Examples Accounting for Domain-Specifincy and accuracy. However, these algorithms have recently been found to be vulnerable to adversarial examples – inputs that are crafted with the intent of causing a Deep Neural Network (DNN) to misclassify with high confidence. Although a significant amount of work has been done to find robust defen
60#
發(fā)表于 2025-3-31 22:09:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 18:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
侯马市| 蓬莱市| 巴青县| 临潭县| 芮城县| 武川县| 乡宁县| 桦川县| 阿坝| 汝南县| 革吉县| 临安市| 玛多县| 酒泉市| 新津县| 顺昌县| 拜城县| 义乌市| 从化市| 隆德县| 定远县| 昌吉市| 新龙县| 衡水市| 淳安县| 新泰市| 大关县| 民乐县| 曲松县| 行唐县| 阿勒泰市| 米脂县| 扎兰屯市| 枝江市| 渭南市| 庆城县| 水城县| 西安市| 婺源县| 忻州市| 江北区|