找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Extraction; 7th IFIP TC 5, TC 12 Andreas Holzinger,Peter Kieseberg,Edgar Weippl Conference proceedings 2023

[復(fù)制鏈接]
查看: 11355|回復(fù): 66
樓主
發(fā)表于 2025-3-21 17:12:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction
副標(biāo)題7th IFIP TC 5, TC 12
編輯Andreas Holzinger,Peter Kieseberg,Edgar Weippl
視頻videohttp://file.papertrans.cn/621/620558/620558.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Machine Learning and Knowledge Extraction; 7th IFIP TC 5, TC 12 Andreas Holzinger,Peter Kieseberg,Edgar Weippl Conference proceedings 2023
描述This volume LNCS-IFIP constitutes the refereed proceedings of the 7th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2023 in Benevento, Italy, during August 28 – September 1, 2023.??.The 18 full papers presented together were carefully reviewed and selected from 30 submissions.?The conference focuses on integrative machine learning approach, considering the importance of data science and visualization for the algorithmic?pipeline with a strong emphasis on privacy, data protection, safety and security...
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; computer networks; computer science; computer systems; computer vision; cyber-in
版次1
doihttps://doi.org/10.1007/978-3-031-40837-3
isbn_softcover978-3-031-40836-6
isbn_ebook978-3-031-40837-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightIFIP International Federation for Information Processing 2023
The information of publication is updating

書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction影響因子(影響力)




書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction被引頻次




書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction被引頻次學(xué)科排名




書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction年度引用




書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction年度引用學(xué)科排名




書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction讀者反饋




書(shū)目名稱(chēng)Machine Learning and Knowledge Extraction讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:07:42 | 只看該作者
,Domain-Specific Evaluation of?Visual Explanations for?Application-Grounded Facial Expression Recognshow that the domain-specific evaluation is especially beneficial for challenging use cases such as facial expression recognition and provides application-grounded quality criteria that are not covered by standard evaluation methods. Our comparison of the domain-specific evaluation method with stand
板凳
發(fā)表于 2025-3-22 04:15:06 | 只看該作者
,Human-in-the-Loop Integration with?Domain-Knowledge Graphs for?Explainable Federated Deep Learning,icial Intelligence (xAI) methods, changing the datasets to create counterfactual explanations. The adapted datasets could influence the local model’s characteristics and thereby create a federated version that distils their diverse knowledge in a centralized scenario. This work demonstrates the feas
地板
發(fā)表于 2025-3-22 07:59:39 | 只看該作者
5#
發(fā)表于 2025-3-22 11:10:51 | 只看該作者
,Hyper-Stacked: Scalable and?Distributed Approach to?AutoML for?Big Data,yper-Stacked, a novel AutoML component built natively on Apache Spark. Hyper-Stacked combines multi-fidelity hyperparameter optimisation with the Super Learner stacking technique to produce a strong and diverse ensemble. Integration with Spark allows for a parallelised and distributed approach, capa
6#
發(fā)表于 2025-3-22 14:41:09 | 只看該作者
7#
發(fā)表于 2025-3-22 17:09:49 | 只看該作者
8#
發(fā)表于 2025-3-23 00:29:15 | 只看該作者
,Let Me Think! Investigating the?Effect of?Explanations Feeding Doubts About the?AI Advice,h pixel attribution maps. These cases were associated with the same AI advice for the base case, but one case was accurate while the other was erroneous with respect to the ground truth. While the introduction of this support system did not significantly enhance diagnostic accuracy, it was highly va
9#
發(fā)表于 2025-3-23 03:18:48 | 只看該作者
10#
發(fā)表于 2025-3-23 08:14:59 | 只看該作者
,The Split Matters: Flat Minima Methods for?Improving the?Performance of?GNNs, can improve the performance of GNN models by over 2 points, if the train-test split is randomized. Following Shchur et al., randomized splits are essential for a fair evaluation of GNNs, as other (fixed) splits like “Planetoid” are biased. Overall, we provide important insights for improving and fa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 00:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳市| 西贡区| 融水| 凤山市| 武夷山市| 扶绥县| 常德市| 岱山县| 循化| 镇雄县| 平山县| 河源市| 嘉善县| 疏附县| 荣成市| 丰台区| 清水河县| 江孜县| 英山县| 五寨县| 湘潭市| 黎城县| 五河县| 富顺县| 胶南市| 年辖:市辖区| 民勤县| 东乡县| 鹤庆县| 饶阳县| 博罗县| 论坛| 永城市| 革吉县| 连江县| 沅陵县| 黄龙县| 鄂温| 阳原县| 江西省| 长海县|