找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track; European Conference, Gianmarco De Francisci Mor

[復制鏈接]
樓主: minuscule
51#
發(fā)表于 2025-3-30 10:54:46 | 只看該作者
52#
發(fā)表于 2025-3-30 14:03:18 | 只看該作者
53#
發(fā)表于 2025-3-30 19:05:02 | 只看該作者
PICT: Precision-enhanced Road Intersection Recognition Using Cycling Trajectoriesward to identify the intersections of different scales correctly. Finally, extensive comparative experiments on two real-world datasets demonstrate that . significantly outperforms the state-of-the-art methods by 52.13% in the F1-score of intersection recognition.
54#
發(fā)表于 2025-3-30 23:13:17 | 只看該作者
FDTI: Fine-Grained Deep Traffic Inference with?Roadnet-Enriched Graphate that our method achieves state-of-the-art performance and learned traffic dynamics with good properties. To the best of our knowledge, we are the first to conduct the city-level fine-grained traffic prediction.
55#
發(fā)表于 2025-3-31 02:01:32 | 只看該作者
RulEth: Genetic Programming-Driven Derivation of?Security Rules for?Automotive Ethernets. Although the attacks examined in this work are far more complex than those considered in most other works in the automotive domain, our results show that most of the attacks examined can be well identified. By being able to evaluate each rule generated separately, the rules that are not working e
56#
發(fā)表于 2025-3-31 05:31:54 | 只看該作者
Spatial-Temporal Graph Sandwich Transformer for?Traffic Flow Forecastingansformer as sliced meat to capture prosperous spatial-temporal interactions. We also assemble a set of such sandwich Transformers together to strengthen the correlations between spatial and temporal domains. Extensive experimental studies are performed on public traffic benchmarks. Promising result
57#
發(fā)表于 2025-3-31 12:50:48 | 只看該作者
58#
發(fā)表于 2025-3-31 16:28:50 | 只看該作者
59#
發(fā)表于 2025-3-31 18:55:35 | 只看該作者
Predictive Maintenance, Adversarial Autoencoders and?Explainabilityur to minimize negative impacts, but also to provide explanations for the failure warnings that can aid in decision-making processes. We propose an autoencoder architecture trained with an adversarial loss, known as the Wasserstein Autoencoder with Generative Adversarial Network (WAE-GAN), designed
60#
發(fā)表于 2025-3-31 23:42:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武汉市| 邵阳市| 安阳市| 潜山县| 酒泉市| 北安市| 通江县| 灵石县| 剑阁县| 太康县| 禹城市| 怀仁县| 潮州市| 尼玛县| 乐至县| 海盐县| 冕宁县| 石泉县| 东平县| 乌拉特后旗| 马尔康县| 通州区| 四川省| 天气| 惠安县| 介休市| 隆尧县| 香河县| 新野县| 永胜县| 博爱县| 桂阳县| 宁津县| 新野县| 扎兰屯市| 彭山县| 开原市| 正宁县| 诏安县| 阳春市| 岑溪市|