找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indr? ?liobait? Confer

[復(fù)制鏈接]
樓主: STRI
21#
發(fā)表于 2025-3-25 03:25:56 | 只看該作者
22#
發(fā)表于 2025-3-25 07:54:07 | 只看該作者
23#
發(fā)表于 2025-3-25 11:51:15 | 只看該作者
Dynamics Adaptive Safe Reinforcement Learning with?a?Misspecified Simulatortraditional methods. Subsequently, DASaR aligns the estimated value functions in the simulator and the real-world environment via inverse dynamics-based relabeling of reward and cost signals. Furthermore, to deal with the underestimation of cost value functions, DASaR employs uncertainty estimation
24#
發(fā)表于 2025-3-25 19:07:01 | 只看該作者
25#
發(fā)表于 2025-3-25 23:38:55 | 只看該作者
26#
發(fā)表于 2025-3-26 02:54:10 | 只看該作者
FairFlow: An Automated Approach to?Model-Based Counterfactual Data Augmentation for NLP paper proposes FairFlow, an automated approach to generating parallel data for training counterfactual text generator models that limits the need for human intervention. Furthermore, we show that FairFlow significantly overcomes the limitations of dictionary-based word-substitution approaches whils
27#
發(fā)表于 2025-3-26 05:56:13 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:29 | 只看該作者
MEGA: Multi-encoder GNN Architecture for?Stronger Task Collaboration and?Generalizationng of each task. This architecture allows for independent learning from multiple pretext tasks, followed by a simple self-supervised dimensionality reduction technique to combine the insights gleaned. Through extensive experiments, we demonstrate the superiority of our approach, showcasing an averag
29#
發(fā)表于 2025-3-26 15:01:41 | 只看該作者
MetaQuRe: Meta-learning from?Model Quality and?Resource Consumptionurce consumption of models evaluated across hundreds of data sets and four execution environments. We use this data to put our methodology into practice and conduct an in-depth analysis of how our approach and data set can help in making AutoML more resource-aware, which represents our third contrib
30#
發(fā)表于 2025-3-26 20:03:39 | 只看該作者
Propagation Structure-Semantic Transfer Learning for?Robust Fake News Detectiontion under a teacher-student architecture. Specifically, we design dual teacher models to learn semantics knowledge and structure knowledge from noisy news content and propagation structure independently. Besides, we design a Multi-channel Knowledge Distillation (MKD) loss to enable the student mode
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栾川县| 新邵县| 丽江市| 台安县| 黑山县| 高雄县| 资中县| 绥宁县| 昭觉县| 宜城市| 广平县| 潢川县| 文化| 武汉市| 双牌县| 江山市| 汾西县| 贺州市| 同江市| 东兰县| 丽江市| 措勤县| 阳城县| 湛江市| 太仓市| 高唐县| 屯昌县| 文化| 合阳县| 明水县| 义马市| 武宁县| 诸城市| 廉江市| 东山县| 庆安县| 富蕴县| 乳源| 两当县| 全椒县| 常熟市|