找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Ulf Brefeld,Elisa Fromont,Céline Robardet Conference proceeding

[復(fù)制鏈接]
樓主: Sinuate
41#
發(fā)表于 2025-3-28 15:40:37 | 只看該作者
Distributed Learning of Non-convex Linear Models with One Round of Communication data, and so has negligible computational cost. Compared with similar distributed estimators that merge locally trained models, OWA either has stronger statistical guarantees, is applicable to more models, or has a more computationally efficient merging procedure.
42#
發(fā)表于 2025-3-28 22:07:57 | 只看該作者
43#
發(fā)表于 2025-3-29 01:22:43 | 只看該作者
Shift Happens: Adjusting Classifiers exact class distribution is known. We also demonstrate experimentally that, when in practice the class distribution is known only approximately, there is often still a reduction in loss depending on the amount of shift and the precision to which the class distribution is known.
44#
發(fā)表于 2025-3-29 06:08:52 | 只看該作者
45#
發(fā)表于 2025-3-29 07:28:10 | 只看該作者
Conference proceedings 2020overy in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019..The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track. ..The contributions were organized in topical sections named a
46#
發(fā)表于 2025-3-29 14:11:10 | 只看該作者
47#
發(fā)表于 2025-3-29 16:29:25 | 只看該作者
48#
發(fā)表于 2025-3-29 21:01:18 | 只看該作者
SLSGD: Secure and Efficient Distributed On-device Machine Learningrithm with efficient communication and attack tolerance. The proposed algorithm has provable convergence and robustness under non-IID settings. Empirical results show that the proposed algorithm stabilizes the convergence and tolerates data poisoning on a small number of workers.
49#
發(fā)表于 2025-3-30 02:11:36 | 只看該作者
978-3-030-46146-1Springer Nature Switzerland AG 2020
50#
發(fā)表于 2025-3-30 07:21:58 | 只看該作者
Machine Learning and Knowledge Discovery in Databases978-3-030-46147-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开封市| 通渭县| 增城市| 康定县| 阿拉尔市| 新竹县| 晋中市| 平凉市| SHOW| 德惠市| 临西县| 津市市| 增城市| 德庆县| 洛隆县| 南溪县| 遵义县| 磐石市| 衡东县| 阳泉市| 名山县| 仲巴县| 湖南省| 旌德县| 九江市| 黄陵县| 新河县| 湛江市| 五台县| 周口市| 抚松县| 和龙市| 霸州市| 宜章县| 太谷县| 万州区| 万山特区| 新野县| 洞口县| 渑池县| 垦利县|