找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Walter Daelemans,Bart Goethals,Katharina Morik Conference proce

[復(fù)制鏈接]
樓主: risky-drinking
11#
發(fā)表于 2025-3-23 09:42:35 | 只看該作者
12#
發(fā)表于 2025-3-23 16:56:42 | 只看該作者
13#
發(fā)表于 2025-3-23 20:14:46 | 只看該作者
14#
發(fā)表于 2025-3-23 23:21:10 | 只看該作者
15#
發(fā)表于 2025-3-24 04:31:51 | 只看該作者
16#
發(fā)表于 2025-3-24 08:32:16 | 只看該作者
Conference proceedings 2008in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Jo
17#
發(fā)表于 2025-3-24 10:45:20 | 只看該作者
18#
發(fā)表于 2025-3-24 15:07:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:36:03 | 只看該作者
Kernel-Based Inductive Transfer the new data. The criterion is based on a meta kernel capturing the similarity of two datasets. In experiments on small molecule and text data, kernel-based inductive transfer showed a statistically significant improvement over the best individual kernel in almost all cases.
20#
發(fā)表于 2025-3-25 02:14:49 | 只看該作者
Improving Classification with Pairwise Constraints: A Margin-Based Approachse constraints into the conventional margin-based learning framework. We also present an efficient algorithm, PCSVM, to solve the pairwise constraint learning problem. Experiments with 15 data sets show that pairwise constraint information significantly increases the performance of classification.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁安市| 元江| 贺兰县| 颍上县| 应城市| 阿合奇县| 右玉县| 余干县| 和田市| 灵台县| 桃源县| 阳曲县| 江永县| 巴马| 景德镇市| 乐业县| 无锡市| 南江县| 金湖县| 壤塘县| 喀喇| 宜阳县| 台南市| 赞皇县| 瑞金市| 福贡县| 乾安县| 新化县| 遵义市| 共和县| 丰镇市| 屯门区| 涞水县| 新干县| 浮梁县| 聊城市| 峨眉山市| 常宁市| 桃江县| 建阳市| 石景山区|