找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Albert Bifet,Michael May,Myra Spiliopoulou Conference proceedin

[復制鏈接]
樓主: 老鼠系領帶
41#
發(fā)表于 2025-3-28 15:00:53 | 只看該作者
Listener-Aware Music Recommendation from Sensor and Social Media Dataindings on the topics of tailoring music recommendations to individual listeners and to groups of listeners sharing certain characteristics. We focus on two tasks: . (also known as serial recommendation) using sensor data and . using social media data.
42#
發(fā)表于 2025-3-28 19:29:22 | 只看該作者
Logic-Based Incremental Process Miningful framework for supporting all of the above. This paper presents a First-Order Logic incremental method for inferring process models. Its efficiency and effectiveness were proved with both controlled experiments and a real-world dataset.
43#
發(fā)表于 2025-3-29 02:35:31 | 只看該作者
978-3-319-23460-1Springer International Publishing Switzerland 2015
44#
發(fā)表于 2025-3-29 03:05:54 | 只看該作者
Machine Learning and Knowledge Discovery in Databases978-3-319-23461-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
45#
發(fā)表于 2025-3-29 08:35:58 | 只看該作者
46#
發(fā)表于 2025-3-29 12:40:49 | 只看該作者
Bayesian Hypothesis Testing in Machine LearningMost hypothesis testing in machine learning is done using the frequentist null-hypothesis significance test, which has severe drawbacks. We review recent Bayesian tests which overcome the drawbacks of the frequentist ones.
47#
發(fā)表于 2025-3-29 19:15:37 | 只看該作者
48#
發(fā)表于 2025-3-29 21:08:43 | 只看該作者
Conference proceedings 2015ence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.
49#
發(fā)表于 2025-3-30 01:47:36 | 只看該作者
0302-9743 n and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.978-3-319-23460-1978-3-319-23461-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
50#
發(fā)表于 2025-3-30 05:51:40 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 12:51
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
株洲县| 黎平县| 宜都市| 灵川县| 隆回县| 锡林浩特市| 施甸县| 延吉市| 界首市| 奇台县| 永城市| 泾川县| 浦东新区| 屏东县| 五大连池市| 合阳县| 高安市| 潮安县| 金塔县| 高阳县| 滨海县| 洛南县| 新民市| 明光市| 遂平县| 沙雅县| 东城区| 扬州市| 望都县| 石河子市| 卢氏县| 万宁市| 察隅县| 巴中市| 开平市| 辰溪县| 南召县| 新乐市| 永平县| 威信县| 临桂县|